alexnet.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. from paddlex.cls import transforms
  6. import paddlex as pdx
  7. # 下载和解压蔬菜分类数据集
  8. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  9. pdx.utils.download_and_decompress(veg_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/cls_transforms.html
  12. train_transforms = transforms.Compose([
  13. transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
  14. transforms.Normalize()
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.ResizeByShort(short_size=256),
  18. transforms.CenterCrop(crop_size=224), transforms.Normalize()
  19. ])
  20. # 定义训练和验证所用的数据集
  21. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-imagenet
  22. train_dataset = pdx.datasets.ImageNet(
  23. data_dir='vegetables_cls',
  24. file_list='vegetables_cls/train_list.txt',
  25. label_list='vegetables_cls/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.ImageNet(
  29. data_dir='vegetables_cls',
  30. file_list='vegetables_cls/val_list.txt',
  31. label_list='vegetables_cls/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
  35. model = pdx.cls.AlexNet(num_classes=len(train_dataset.labels))
  36. # AlexNet需要指定确定的input_shape
  37. model.fixed_input_shape = [224, 224]
  38. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/classification.html#train
  39. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  40. model.train(
  41. num_epochs=10,
  42. train_dataset=train_dataset,
  43. train_batch_size=32,
  44. eval_dataset=eval_dataset,
  45. lr_decay_epochs=[4, 6, 8],
  46. learning_rate=0.0025,
  47. save_dir='output/alexnet',
  48. use_vdl=True)