mobilenetv3_large.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. from paddlex.cls import transforms
  6. import paddlex as pdx
  7. # 下载和解压蔬菜分类数据集
  8. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  9. pdx.utils.download_and_decompress(veg_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/cls_transforms.html
  12. train_transforms = transforms.Compose([
  13. transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
  14. transforms.Normalize()
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.ResizeByShort(short_size=256),
  18. transforms.CenterCrop(crop_size=224), transforms.Normalize()
  19. ])
  20. # 定义训练和验证所用的数据集
  21. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-imagenet
  22. train_dataset = pdx.datasets.ImageNet(
  23. data_dir='vegetables_cls',
  24. file_list='vegetables_cls/train_list.txt',
  25. label_list='vegetables_cls/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.ImageNet(
  29. data_dir='vegetables_cls',
  30. file_list='vegetables_cls/val_list.txt',
  31. label_list='vegetables_cls/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标
  35. # VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
  36. # 浏览器打开 https://0.0.0.0:8001即可
  37. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  38. model = pdx.cls.MobileNetV3_large(num_classes=len(train_dataset.labels))
  39. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/classification.html#train
  40. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  41. model.train(
  42. num_epochs=10,
  43. train_dataset=train_dataset,
  44. train_batch_size=32,
  45. eval_dataset=eval_dataset,
  46. lr_decay_epochs=[4, 6, 8],
  47. learning_rate=0.025,
  48. save_dir='output/mobilenetv3_large',
  49. use_vdl=True)