| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "include/paddlex/paddlex.h"
- #include <iostream>
- #include <fstream>
- namespace PaddleX {
- void Model::create_predictor(const std::string& model_dir,
- const std::string& cfg_file,
- int thread_num) {
- paddle::lite_api::MobileConfig config;
- config.set_model_from_file(model_dir);
- config.set_threads(thread_num);
- load_config(cfg_file);
- predictor_ =
- paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::MobileConfig>(
- config);
- }
- bool Model::load_config(const std::string& cfg_file) {
- YAML::Node config = YAML::LoadFile(cfg_file);
- type = config["_Attributes"]["model_type"].as<std::string>();
- name = config["Model"].as<std::string>();
- bool to_rgb = true;
- if (config["TransformsMode"].IsDefined()) {
- std::string mode = config["TransformsMode"].as<std::string>();
- if (mode == "BGR") {
- to_rgb = false;
- } else if (mode != "RGB") {
- std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
- << std::endl;
- return false;
- }
- }
- // init preprocess ops
- transforms_.Init(config["Transforms"], to_rgb);
- // read label list
- for (const auto& item : config["_Attributes"]["labels"]) {
- int index = labels.size();
- labels[index] = item.as<std::string>();
- }
- return true;
- }
- bool Model::preprocess(cv::Mat* input_im, ImageBlob* inputs) {
- if (!transforms_.Run(input_im, inputs)) {
- return false;
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, ClsResult* result) {
- inputs_.clear();
- if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!"
- << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!"
- << std::endl;
- return false;
- }
- // preprocess
- inputs_.input_tensor_ = std::move(predictor_->GetInput(0));
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // predict
- predictor_->Run();
- std::unique_ptr<const paddle::lite_api::Tensor> output_tensor(
- std::move(predictor_->GetOutput(0)));
- const float *outputs_data = output_tensor->mutable_data<float>();
- // postprocess
- auto ptr = std::max_element(outputs_data, outputs_data+sizeof(outputs_data));
- result->category_id = std::distance(outputs_data, ptr);
- result->score = *ptr;
- result->category = labels[result->category_id];
- }
- bool Model::predict(const cv::Mat& im, DetResult* result) {
- inputs_.clear();
- result->clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- }
- inputs_.input_tensor_ = std::move(predictor_->GetInput(0));
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- if (name == "YOLOv3") {
- std::unique_ptr<paddle::lite_api::Tensor> im_size_tensor(
- std::move(predictor_->GetInput(1)));
- im_size_tensor->Resize({1,2});
- auto *im_size_data = im_size_tensor->mutable_data<int>();
- memcpy(im_size_data, inputs_.ori_im_size_.data(), 1*2*sizeof(int));
- }
- predictor_->Run();
- auto output_names = predictor_->GetOutputNames();
- auto output_box_tensor = predictor_->GetTensor(output_names[0]);
- auto *output_box = output_box_tensor->mutable_data<float>();
- auto output_box_shape = output_box_tensor->shape();
- int64_t size = 1;
- for (const auto& i : output_box_shape) {
- size *= i;
- }
- auto num_boxes = static_cast<int>(size / 6);
- for (int i = 0; i < num_boxes; ++i) {
- Box box;
- box.category_id = static_cast<int>(round(output_box[i * 6]));
- box.category = labels[box.category_id];
- box.score = output_box[i * 6 + 1];
- float xmin = output_box[i * 6 + 2];
- float ymin = output_box[i * 6 + 3];
- float xmax = output_box[i * 6 + 4];
- float ymax = output_box[i * 6 + 5];
- float w = xmax - xmin + 1;
- float h = ymax - ymin + 1;
- box.coordinate = {xmin, ymin, w, h};
- result->boxes.push_back(std::move(box));
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, SegResult* result) {
- result->clear();
- inputs_.clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!" << std::endl;
- return false;
- }
- inputs_.input_tensor_ = std::move(predictor_->GetInput(0));
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- std::cout << "Preprocess is done" << std::endl;
- predictor_->Run();
- auto output_names = predictor_->GetOutputNames();
- auto output_label_tensor = predictor_->GetTensor(output_names[0]);
- const int64_t *label_data = output_label_tensor->mutable_data<int64_t>();
- std::vector<int64_t> output_label_shape = output_label_tensor->shape();
- int size = 1;
- for (const auto& i : output_label_shape) {
- size *= i;
- result->label_map.shape.push_back(i);
- }
- result->label_map.data.resize(size);
- memcpy(result->label_map.data.data(), label_data, size*sizeof(int64_t));
- auto output_score_tensor = predictor_->GetTensor(output_names[1]);
- const float *score_data = output_score_tensor->mutable_data<float>();
- std::vector<int64_t> output_score_shape = output_score_tensor->shape();
- size = 1;
- for (const auto& i : output_score_shape) {
- size *= i;
- result->score_map.shape.push_back(i);
- }
- result->score_map.data.resize(size);
- memcpy(result->score_map.data.data(), score_data, size*sizeof(float));
- std::vector<uint8_t> label_map(result->label_map.data.begin(),
- result->label_map.data.end());
- cv::Mat mask_label(result->label_map.shape[1],
- result->label_map.shape[2],
- CV_8UC1,
- label_map.data());
- cv::Mat mask_score(result->score_map.shape[2],
- result->score_map.shape[3],
- CV_32FC1,
- result->score_map.data.data());
- int idx = 1;
- int len_postprocess = inputs_.im_size_before_resize_.size();
- for (std::vector<std::string>::reverse_iterator iter =
- inputs_.reshape_order_.rbegin();
- iter != inputs_.reshape_order_.rend();
- ++iter) {
- if (*iter == "padding") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto padding_w = before_shape[0];
- auto padding_h = before_shape[1];
- mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
- mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
- } else if (*iter == "resize") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto resize_w = before_shape[0];
- auto resize_h = before_shape[1];
- cv::resize(mask_label,
- mask_label,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_NEAREST);
- cv::resize(mask_score,
- mask_score,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_LINEAR);
- }
- ++idx;
- }
- result->label_map.data.assign(mask_label.begin<uint8_t>(),
- mask_label.end<uint8_t>());
- result->label_map.shape = {mask_label.rows, mask_label.cols};
- result->score_map.data.assign(mask_score.begin<float>(),
- mask_score.end<float>());
- result->score_map.shape = {mask_score.rows, mask_score.cols};
- return true;
- }
- } // namespace PaddleX
|