paddle_inference_predictor.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import paddle
  16. from paddle.inference import Config, create_predictor
  17. from .....utils import logging
  18. class _PaddleInferencePredictor(object):
  19. """ Predictor based on Paddle Inference """
  20. def __init__(self, model_dir, model_prefix, option, delete_pass=[]):
  21. super().__init__()
  22. self.predictor, self.inference_config, self.input_names, self.input_handlers, self.output_handlers = \
  23. self._create(model_dir, model_prefix, option, delete_pass=delete_pass)
  24. def _create(self, model_dir, model_prefix, option, delete_pass):
  25. """ _create """
  26. use_pir = hasattr(paddle.framework,
  27. "use_pir_api") and paddle.framework.use_pir_api()
  28. model_postfix = ".json" if use_pir else ".pdmodel"
  29. model_file = os.path.join(model_dir, f"{model_prefix}{model_postfix}")
  30. params_file = os.path.join(model_dir, f"{model_prefix}.pdiparams")
  31. config = Config(model_file, params_file)
  32. if option.device == 'gpu':
  33. config.enable_use_gpu(200, option.device_id)
  34. config.enable_new_ir(True)
  35. elif option.device == 'npu':
  36. config.enable_custom_device('npu')
  37. os.environ["FLAGS_npu_jit_compile"] = "0"
  38. os.environ["FLAGS_use_stride_kernel"] = "0"
  39. os.environ["FLAGS_allocator_strategy"] = "auto_growth"
  40. os.environ[
  41. "CUSTOM_DEVICE_BLACK_LIST"] = "pad3d,pad3d_grad,set_value,set_value_with_tensor"
  42. elif option.device == 'xpu':
  43. config.enable_custom_device('npu')
  44. elif option.device == 'mlu':
  45. config.enable_custom_device('mlu')
  46. else:
  47. assert option.device == 'cpu'
  48. config.disable_gpu()
  49. if 'mkldnn' in option.run_mode:
  50. try:
  51. config.enable_mkldnn()
  52. config.set_cpu_math_library_num_threads(option.cpu_threads)
  53. if 'bf16' in option.run_mode:
  54. config.enable_mkldnn_bfloat16()
  55. except Exception as e:
  56. logging.warning(
  57. "MKL-DNN is not available. We will disable MKL-DNN.")
  58. precision_map = {
  59. 'trt_int8': Config.Precision.Int8,
  60. 'trt_fp32': Config.Precision.Float32,
  61. 'trt_fp16': Config.Precision.Half
  62. }
  63. if option.run_mode in precision_map.keys():
  64. config.enable_tensorrt_engine(
  65. workspace_size=(1 << 25) * option.batch_size,
  66. max_batch_size=option.batch_size,
  67. min_subgraph_size=option.min_subgraph_size,
  68. precision_mode=precision_map[option.run_mode],
  69. trt_use_static=option.trt_use_static,
  70. use_calib_mode=option.trt_calib_mode)
  71. if option.shape_info_filename is not None:
  72. if not os.path.exists(option.shape_info_filename):
  73. config.collect_shape_range_info(option.shape_info_filename)
  74. logging.info(
  75. f"Dynamic shape info is collected into: {option.shape_info_filename}"
  76. )
  77. else:
  78. logging.info(
  79. f"A dynamic shape info file ( {option.shape_info_filename} ) already exists. \
  80. No need to generate again.")
  81. config.enable_tuned_tensorrt_dynamic_shape(
  82. option.shape_info_filename, True)
  83. # Disable paddle inference logging
  84. config.disable_glog_info()
  85. for del_p in delete_pass:
  86. config.delete_pass(del_p)
  87. # Enable shared memory
  88. config.enable_memory_optim()
  89. config.switch_ir_optim(True)
  90. # Disable feed, fetch OP, needed by zero_copy_run
  91. config.switch_use_feed_fetch_ops(False)
  92. predictor = create_predictor(config)
  93. # Get input and output handlers
  94. input_names = predictor.get_input_names()
  95. input_handlers = []
  96. output_handlers = []
  97. for input_name in input_names:
  98. input_handler = predictor.get_input_handle(input_name)
  99. input_handlers.append(input_handler)
  100. output_names = predictor.get_output_names()
  101. for output_name in output_names:
  102. output_handler = predictor.get_output_handle(output_name)
  103. output_handlers.append(output_handler)
  104. return predictor, config, input_names, input_handlers, output_handlers
  105. def get_input_names(self):
  106. """ get input names """
  107. return self.input_names
  108. def predict(self, x):
  109. """ predict """
  110. for idx in range(len(x)):
  111. self.input_handlers[idx].reshape(x[idx].shape)
  112. self.input_handlers[idx].copy_from_cpu(x[idx])
  113. self.predictor.run()
  114. res = []
  115. for out_tensor in self.output_handlers:
  116. out_arr = out_tensor.copy_to_cpu()
  117. res.append(out_arr)
  118. return res