| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import paddle
- from paddle.inference import Config, create_predictor
- from .....utils import logging
- class _PaddleInferencePredictor(object):
- """ Predictor based on Paddle Inference """
- def __init__(self, model_dir, model_prefix, option, delete_pass=[]):
- super().__init__()
- self.predictor, self.inference_config, self.input_names, self.input_handlers, self.output_handlers = \
- self._create(model_dir, model_prefix, option, delete_pass=delete_pass)
- def _create(self, model_dir, model_prefix, option, delete_pass):
- """ _create """
- use_pir = hasattr(paddle.framework,
- "use_pir_api") and paddle.framework.use_pir_api()
- model_postfix = ".json" if use_pir else ".pdmodel"
- model_file = os.path.join(model_dir, f"{model_prefix}{model_postfix}")
- params_file = os.path.join(model_dir, f"{model_prefix}.pdiparams")
- config = Config(model_file, params_file)
- if option.device == 'gpu':
- config.enable_use_gpu(200, option.device_id)
- config.enable_new_ir(True)
- elif option.device == 'npu':
- config.enable_custom_device('npu')
- os.environ["FLAGS_npu_jit_compile"] = "0"
- os.environ["FLAGS_use_stride_kernel"] = "0"
- os.environ["FLAGS_allocator_strategy"] = "auto_growth"
- os.environ[
- "CUSTOM_DEVICE_BLACK_LIST"] = "pad3d,pad3d_grad,set_value,set_value_with_tensor"
- elif option.device == 'xpu':
- config.enable_custom_device('npu')
- elif option.device == 'mlu':
- config.enable_custom_device('mlu')
- else:
- assert option.device == 'cpu'
- config.disable_gpu()
- if 'mkldnn' in option.run_mode:
- try:
- config.enable_mkldnn()
- config.set_cpu_math_library_num_threads(option.cpu_threads)
- if 'bf16' in option.run_mode:
- config.enable_mkldnn_bfloat16()
- except Exception as e:
- logging.warning(
- "MKL-DNN is not available. We will disable MKL-DNN.")
- precision_map = {
- 'trt_int8': Config.Precision.Int8,
- 'trt_fp32': Config.Precision.Float32,
- 'trt_fp16': Config.Precision.Half
- }
- if option.run_mode in precision_map.keys():
- config.enable_tensorrt_engine(
- workspace_size=(1 << 25) * option.batch_size,
- max_batch_size=option.batch_size,
- min_subgraph_size=option.min_subgraph_size,
- precision_mode=precision_map[option.run_mode],
- trt_use_static=option.trt_use_static,
- use_calib_mode=option.trt_calib_mode)
- if option.shape_info_filename is not None:
- if not os.path.exists(option.shape_info_filename):
- config.collect_shape_range_info(option.shape_info_filename)
- logging.info(
- f"Dynamic shape info is collected into: {option.shape_info_filename}"
- )
- else:
- logging.info(
- f"A dynamic shape info file ( {option.shape_info_filename} ) already exists. \
- No need to generate again.")
- config.enable_tuned_tensorrt_dynamic_shape(
- option.shape_info_filename, True)
- # Disable paddle inference logging
- config.disable_glog_info()
- for del_p in delete_pass:
- config.delete_pass(del_p)
- # Enable shared memory
- config.enable_memory_optim()
- config.switch_ir_optim(True)
- # Disable feed, fetch OP, needed by zero_copy_run
- config.switch_use_feed_fetch_ops(False)
- predictor = create_predictor(config)
- # Get input and output handlers
- input_names = predictor.get_input_names()
- input_handlers = []
- output_handlers = []
- for input_name in input_names:
- input_handler = predictor.get_input_handle(input_name)
- input_handlers.append(input_handler)
- output_names = predictor.get_output_names()
- for output_name in output_names:
- output_handler = predictor.get_output_handle(output_name)
- output_handlers.append(output_handler)
- return predictor, config, input_names, input_handlers, output_handlers
- def get_input_names(self):
- """ get input names """
- return self.input_names
- def predict(self, x):
- """ predict """
- for idx in range(len(x)):
- self.input_handlers[idx].reshape(x[idx].shape)
- self.input_handlers[idx].copy_from_cpu(x[idx])
- self.predictor.run()
- res = []
- for out_tensor in self.output_handlers:
- out_arr = out_tensor.copy_to_cpu()
- res.append(out_arr)
- return res
|