segmenter.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import os.path as osp
  16. import numpy as np
  17. from collections import OrderedDict
  18. import paddle
  19. import paddle.nn.functional as F
  20. from paddle.static import InputSpec
  21. import paddlex
  22. from paddlex.cv.nets.paddleseg import models
  23. from paddlex.cv.transforms import arrange_transforms
  24. from paddlex.utils import get_single_card_bs
  25. import paddlex.utils.logging as logging
  26. from .base import BaseModel
  27. from .utils import seg_metrics as metrics
  28. from paddlex.utils.checkpoint import seg_pretrain_weights_dict
  29. from paddlex.cv.nets.paddleseg.cvlibs import manager
  30. from paddlex.cv.transforms import Decode
  31. __all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2"]
  32. class BaseSegmenter(BaseModel):
  33. def __init__(self,
  34. model_name,
  35. num_classes=2,
  36. use_mixed_loss=False,
  37. **params):
  38. self.init_params = locals()
  39. super(BaseSegmenter, self).__init__('segmenter')
  40. if not hasattr(models, model_name):
  41. raise Exception("ERROR: There's no model named {}.".format(
  42. model_name))
  43. self.model_name = model_name
  44. self.num_classes = num_classes
  45. self.use_mixed_loss = use_mixed_loss
  46. self.losses = None
  47. self.labels = None
  48. self.net = self.build_net(**params)
  49. def build_net(self, **params):
  50. # TODO: when using paddle.utils.unique_name.guard,
  51. # DeepLabv3p and HRNet will raise a error
  52. net = models.__dict__[self.model_name](num_classes=self.num_classes,
  53. **params)
  54. return net
  55. def get_test_inputs(self, image_shape):
  56. input_spec = [
  57. InputSpec(
  58. shape=[None, 3] + image_shape, name='image', dtype='float32')
  59. ]
  60. return input_spec
  61. def run(self, net, inputs, mode):
  62. net_out = net(inputs[0])
  63. logit = net_out[0]
  64. outputs = OrderedDict()
  65. if mode == 'test':
  66. origin_shape = inputs[1]
  67. score_map = self._postprocess(
  68. logit, origin_shape, transforms=inputs[2])
  69. label_map = paddle.argmax(
  70. score_map, axis=1, keepdim=True, dtype='int32')
  71. score_map = paddle.max(score_map, axis=1, keepdim=True)
  72. score_map = paddle.squeeze(score_map)
  73. label_map = paddle.squeeze(label_map)
  74. outputs = {'label_map': label_map, 'score_map': score_map}
  75. if mode == 'eval':
  76. pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
  77. label = inputs[1]
  78. origin_shape = [label.shape[-2:]]
  79. # TODO: 替换cv2后postprocess移出run
  80. pred = self._postprocess(pred, origin_shape, transforms=inputs[2])
  81. intersect_area, pred_area, label_area = metrics.calculate_area(
  82. pred, label, self.num_classes)
  83. outputs['intersect_area'] = intersect_area
  84. outputs['pred_area'] = pred_area
  85. outputs['label_area'] = label_area
  86. if mode == 'train':
  87. loss_list = metrics.loss_computation(
  88. logits_list=net_out, labels=inputs[1], losses=self.losses)
  89. loss = sum(loss_list)
  90. outputs['loss'] = loss
  91. return outputs
  92. def default_loss(self):
  93. if isinstance(self.use_mixed_loss, bool):
  94. if self.use_mixed_loss:
  95. losses = [
  96. manager.LOSSES['CrossEntropyLoss'](),
  97. manager.LOSSES['LovaszSoftmaxLoss']()
  98. ]
  99. coef = [.8, .2]
  100. loss_type = [
  101. manager.LOSSES['MixedLoss'](losses=losses, coef=coef)
  102. ]
  103. else:
  104. loss_type = [manager.LOSSES['CrossEntropyLoss']()]
  105. else:
  106. losses, coef = list(zip(*self.use_mixed_loss))
  107. if not set(losses).issubset(
  108. ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
  109. raise ValueError(
  110. "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
  111. )
  112. losses = [manager.LOSSES[loss]() for loss in losses]
  113. loss_type = [
  114. manager.LOSSES['MixedLoss'](losses=losses, coef=list(coef))
  115. ]
  116. if self.model_name == 'FastSCNN':
  117. loss_type *= 2
  118. loss_coef = [1.0, 0.4]
  119. elif self.model_name == 'BiSeNetV2':
  120. loss_type *= 5
  121. loss_coef = [1.0] * 5
  122. else:
  123. loss_coef = [1.0]
  124. losses = {'types': loss_type, 'coef': loss_coef}
  125. return losses
  126. def default_optimizer(self,
  127. parameters,
  128. learning_rate,
  129. num_epochs,
  130. num_steps_each_epoch,
  131. lr_decay_power=0.9):
  132. decay_step = num_epochs * num_steps_each_epoch
  133. lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
  134. learning_rate, decay_step, end_lr=0, power=lr_decay_power)
  135. optimizer = paddle.optimizer.Momentum(
  136. learning_rate=lr_scheduler,
  137. parameters=parameters,
  138. momentum=0.9,
  139. weight_decay=4e-5)
  140. return optimizer
  141. def train(self,
  142. num_epochs,
  143. train_dataset,
  144. train_batch_size=2,
  145. eval_dataset=None,
  146. optimizer=None,
  147. save_interval_epochs=1,
  148. log_interval_steps=2,
  149. save_dir='output',
  150. pretrain_weights='CITYSCAPES',
  151. learning_rate=0.01,
  152. lr_decay_power=0.9,
  153. early_stop=False,
  154. early_stop_patience=5,
  155. use_vdl=True):
  156. """
  157. Train the model.
  158. Args:
  159. num_epochs(int): The number of epochs.
  160. train_dataset(paddlex.dataset): Training dataset.
  161. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  162. eval_dataset(paddlex.dataset, optional):
  163. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  164. optimizer(paddle.optimizer.Optimizer or None, optional):
  165. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  166. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  167. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  168. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  169. pretrain_weights(str or None, optional):
  170. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  171. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  172. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  173. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  174. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  175. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  176. """
  177. self.labels = train_dataset.labels
  178. if self.losses is None:
  179. self.losses = self.default_loss()
  180. if optimizer is None:
  181. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  182. self.optimizer = self.default_optimizer(
  183. self.net.parameters(), learning_rate, num_epochs,
  184. num_steps_each_epoch, lr_decay_power)
  185. else:
  186. self.optimizer = optimizer
  187. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  188. if pretrain_weights not in seg_pretrain_weights_dict[
  189. self.model_name]:
  190. logging.warning(
  191. "Path of pretrain_weights('{}') does not exist!".format(
  192. pretrain_weights))
  193. logging.warning("Pretrain_weights is forcibly set to '{}'. "
  194. "If don't want to use pretrain weights, "
  195. "set pretrain_weights to be None.".format(
  196. seg_pretrain_weights_dict[self.model_name][
  197. 0]))
  198. pretrain_weights = seg_pretrain_weights_dict[self.model_name][
  199. 0]
  200. pretrained_dir = osp.join(save_dir, 'pretrain')
  201. self.net_initialize(
  202. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  203. self.train_loop(
  204. num_epochs=num_epochs,
  205. train_dataset=train_dataset,
  206. train_batch_size=train_batch_size,
  207. eval_dataset=eval_dataset,
  208. save_interval_epochs=save_interval_epochs,
  209. log_interval_steps=log_interval_steps,
  210. save_dir=save_dir,
  211. early_stop=early_stop,
  212. early_stop_patience=early_stop_patience,
  213. use_vdl=use_vdl)
  214. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  215. """
  216. Evaluate the model.
  217. Args:
  218. eval_dataset(paddlex.dataset): Evaluation dataset.
  219. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  220. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  221. Returns:
  222. collections.OrderedDict with key-value pairs:
  223. {"miou": `mean intersection over union`,
  224. "category_iou": `category-wise mean intersection over union`,
  225. "oacc": `overall accuracy`,
  226. "category_acc": `category-wise accuracy`,
  227. "kappa": ` kappa coefficient`,
  228. "category_F1-score": `F1 score`}.
  229. """
  230. arrange_transforms(
  231. model_type=self.model_type,
  232. transforms=eval_dataset.transforms,
  233. mode='eval')
  234. self.net.eval()
  235. nranks = paddle.distributed.get_world_size()
  236. local_rank = paddle.distributed.get_rank()
  237. if nranks > 1:
  238. # Initialize parallel environment if not done.
  239. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  240. ):
  241. paddle.distributed.init_parallel_env()
  242. batch_size_each_card = get_single_card_bs(batch_size)
  243. if batch_size_each_card > 1:
  244. batch_size_each_card = 1
  245. batch_size = batch_size_each_card * paddlex.env_info['num']
  246. logging.warning(
  247. "Segmenter only supports batch_size=1 for each gpu/cpu card " \
  248. "during evaluation, so batch_size " \
  249. "is forcibly set to {}.".format(batch_size))
  250. self.eval_data_loader = self.build_data_loader(
  251. eval_dataset, batch_size=batch_size, mode='eval')
  252. intersect_area_all = 0
  253. pred_area_all = 0
  254. label_area_all = 0
  255. logging.info(
  256. "Start to evaluate(total_samples={}, total_steps={})...".format(
  257. eval_dataset.num_samples,
  258. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  259. with paddle.no_grad():
  260. for step, data in enumerate(self.eval_data_loader):
  261. data.append(eval_dataset.transforms.transforms)
  262. outputs = self.run(self.net, data, 'eval')
  263. pred_area = outputs['pred_area']
  264. label_area = outputs['label_area']
  265. intersect_area = outputs['intersect_area']
  266. # Gather from all ranks
  267. if nranks > 1:
  268. intersect_area_list = []
  269. pred_area_list = []
  270. label_area_list = []
  271. paddle.distributed.all_gather(intersect_area_list,
  272. intersect_area)
  273. paddle.distributed.all_gather(pred_area_list, pred_area)
  274. paddle.distributed.all_gather(label_area_list, label_area)
  275. # Some image has been evaluated and should be eliminated in last iter
  276. if (step + 1) * nranks > len(eval_dataset):
  277. valid = len(eval_dataset) - step * nranks
  278. intersect_area_list = intersect_area_list[:valid]
  279. pred_area_list = pred_area_list[:valid]
  280. label_area_list = label_area_list[:valid]
  281. for i in range(len(intersect_area_list)):
  282. intersect_area_all = intersect_area_all + intersect_area_list[
  283. i]
  284. pred_area_all = pred_area_all + pred_area_list[i]
  285. label_area_all = label_area_all + label_area_list[i]
  286. else:
  287. intersect_area_all = intersect_area_all + intersect_area
  288. pred_area_all = pred_area_all + pred_area
  289. label_area_all = label_area_all + label_area
  290. class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
  291. label_area_all)
  292. # TODO 确认是按oacc还是macc
  293. class_acc, oacc = metrics.accuracy(intersect_area_all, pred_area_all)
  294. kappa = metrics.kappa(intersect_area_all, pred_area_all,
  295. label_area_all)
  296. category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
  297. label_area_all)
  298. eval_metrics = OrderedDict(
  299. zip([
  300. 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
  301. 'category_F1-score'
  302. ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
  303. return eval_metrics
  304. def predict(self, img_file, transforms=None):
  305. """
  306. Do inference.
  307. Args:
  308. Args:
  309. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  310. Image path or decoded image data in a BGR format, which also could constitute a list,
  311. meaning all images to be predicted as a mini-batch.
  312. transforms(paddlex.transforms.Compose or None, optional):
  313. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  314. Returns:
  315. If img_file is a string or np.array, the result is a dict with key-value pairs:
  316. {"label map": `label map`, "score_map": `score map`}.
  317. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  318. label_map(np.ndarray): the predicted label map
  319. score_map(np.ndarray): the prediction score map
  320. """
  321. if transforms is None and not hasattr(self, 'test_transforms'):
  322. raise Exception("transforms need to be defined, now is None.")
  323. if transforms is None:
  324. transforms = self.test_transforms
  325. if isinstance(img_file, (str, np.ndarray)):
  326. images = [img_file]
  327. else:
  328. images = img_file
  329. batch_im, batch_origin_shape = self._preprocess(images, transforms,
  330. self.model_type)
  331. self.net.eval()
  332. data = (batch_im, batch_origin_shape, transforms.transforms)
  333. outputs = self.run(self.net, data, 'test')
  334. label_map = outputs['label_map']
  335. label_map = label_map.numpy().astype('uint8')
  336. score_map = outputs['score_map']
  337. score_map = score_map.numpy().astype('float32')
  338. return {'label_map': label_map, 'score_map': score_map}
  339. def _preprocess(self, images, transforms, model_type):
  340. arrange_transforms(
  341. model_type=model_type, transforms=transforms, mode='test')
  342. batch_im = list()
  343. batch_ori_shape = list()
  344. for im in images:
  345. sample = {'image': im}
  346. if isinstance(sample['image'], str):
  347. sample = Decode(to_rgb=False)(sample)
  348. ori_shape = sample['image'].shape[:2]
  349. im = transforms(sample)[0]
  350. batch_im.append(im)
  351. batch_ori_shape.append(ori_shape)
  352. batch_im = paddle.to_tensor(batch_im)
  353. return batch_im, batch_ori_shape
  354. @staticmethod
  355. def get_transforms_shape_info(batch_ori_shape, transforms):
  356. batch_restore_list = list()
  357. for ori_shape in batch_ori_shape:
  358. restore_list = list()
  359. h, w = ori_shape[0], ori_shape[1]
  360. for op in transforms:
  361. if op.__class__.__name__ in ['Resize', 'ResizeByShort']:
  362. restore_list.append(('resize', (h, w)))
  363. h, w = op.target_size
  364. if op.__class__.__name__ in ['Padding']:
  365. restore_list.append(('padding', (h, w)))
  366. h, w = op.target_size
  367. batch_restore_list.append(restore_list)
  368. return batch_restore_list
  369. def _postprocess(self, batch_pred, batch_origin_shape, transforms):
  370. batch_restore_list = BaseSegmenter.get_transforms_shape_info(
  371. batch_origin_shape, transforms)
  372. results = list()
  373. for pred, restore_list in zip(batch_pred, batch_restore_list):
  374. pred = paddle.unsqueeze(pred, axis=0)
  375. for item in restore_list[::-1]:
  376. # TODO: 替换成cv2的interpolate(部署阶段无法使用paddle op)
  377. h, w = item[1][0], item[1][1]
  378. if item[0] == 'resize':
  379. pred = F.interpolate(pred, (h, w), mode='nearest')
  380. elif item[0] == 'padding':
  381. pred = pred[:, :, 0:h, 0:w]
  382. else:
  383. pass
  384. results.append(pred)
  385. batch_pred = paddle.concat(results, axis=0)
  386. return batch_pred
  387. class UNet(BaseSegmenter):
  388. def __init__(self,
  389. num_classes=2,
  390. use_mixed_loss=False,
  391. use_deconv=False,
  392. align_corners=False):
  393. params = {'use_deconv': use_deconv, 'align_corners': align_corners}
  394. super(UNet, self).__init__(
  395. model_name='UNet',
  396. num_classes=num_classes,
  397. use_mixed_loss=use_mixed_loss,
  398. **params)
  399. class DeepLabV3P(BaseSegmenter):
  400. def __init__(self,
  401. num_classes=2,
  402. backbone='ResNet50_vd',
  403. use_mixed_loss=False,
  404. output_stride=8,
  405. backbone_indices=(0, 3),
  406. aspp_ratios=(1, 12, 24, 36),
  407. aspp_out_channels=256,
  408. align_corners=False):
  409. self.backbone_name = backbone
  410. if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
  411. raise ValueError(
  412. "backbone: {} is not supported. Please choose one of "
  413. "('ResNet50_vd', 'ResNet101_vd')".format(backbone))
  414. backbone = manager.BACKBONES[backbone](output_stride=output_stride)
  415. params = {
  416. 'backbone': backbone,
  417. 'backbone_indices': backbone_indices,
  418. 'aspp_ratios': aspp_ratios,
  419. 'aspp_out_channels': aspp_out_channels,
  420. 'align_corners': align_corners
  421. }
  422. super(DeepLabV3P, self).__init__(
  423. model_name='DeepLabV3P',
  424. num_classes=num_classes,
  425. use_mixed_loss=use_mixed_loss,
  426. **params)
  427. class FastSCNN(BaseSegmenter):
  428. def __init__(self,
  429. num_classes=2,
  430. use_mixed_loss=False,
  431. align_corners=False):
  432. params = {'align_corners': align_corners}
  433. super(FastSCNN, self).__init__(
  434. model_name='FastSCNN',
  435. num_classes=num_classes,
  436. use_mixed_loss=use_mixed_loss,
  437. **params)
  438. class HRNet(BaseSegmenter):
  439. def __init__(self,
  440. num_classes=2,
  441. width=48,
  442. use_mixed_loss=False,
  443. align_corners=False):
  444. if width not in (18, 48):
  445. raise ValueError(
  446. "width={} is not supported, please choose from [18, 48]".
  447. format(width))
  448. self.backbone_name = 'HRNet_W{}'.format(width)
  449. backbone = manager.BACKBONES[self.backbone_name](
  450. align_corners=align_corners)
  451. params = {'backbone': backbone, 'align_corners': align_corners}
  452. super(HRNet, self).__init__(
  453. model_name='FCN',
  454. num_classes=num_classes,
  455. use_mixed_loss=use_mixed_loss,
  456. **params)
  457. self.model_name = 'HRNet'
  458. class BiSeNetV2(BaseSegmenter):
  459. def __init__(self,
  460. num_classes=2,
  461. use_mixed_loss=False,
  462. align_corners=False):
  463. params = {'align_corners': align_corners}
  464. super(BiSeNetV2, self).__init__(
  465. model_name='BiSeNetV2',
  466. num_classes=num_classes,
  467. use_mixed_loss=use_mixed_loss,
  468. **params)