x2coco.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. #!/usr/bin/env python
  2. # coding: utf-8
  3. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. #
  9. # http://www.apache.org/licenses/LICENSE-2.0
  10. #
  11. # Unless required by applicable law or agreed to in writing, software
  12. # distributed under the License is distributed on an "AS IS" BASIS,
  13. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. # See the License for the specific language governing permissions and
  15. # limitations under the License.
  16. import cv2
  17. import json
  18. import os
  19. import os.path as osp
  20. import platform
  21. import shutil
  22. import numpy as np
  23. import PIL.ImageDraw
  24. from .base import MyEncoder, is_pic, get_encoding
  25. class X2COCO(object):
  26. def __init__(self):
  27. self.images_list = []
  28. self.categories_list = []
  29. self.annotations_list = []
  30. def generate_categories_field(self, label, labels_list):
  31. category = {}
  32. category["supercategory"] = "component"
  33. category["id"] = len(labels_list) + 1
  34. category["name"] = label
  35. return category
  36. def generate_rectangle_anns_field(self, points, label, image_id, object_id, label_to_num):
  37. annotation = {}
  38. seg_points = np.asarray(points).copy()
  39. seg_points[1, :] = np.asarray(points)[2, :]
  40. seg_points[2, :] = np.asarray(points)[1, :]
  41. annotation["segmentation"] = [list(seg_points.flatten())]
  42. annotation["iscrowd"] = 0
  43. annotation["image_id"] = image_id + 1
  44. annotation["bbox"] = list(
  45. map(float, [
  46. points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
  47. 1] - points[0][1]
  48. ]))
  49. annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
  50. annotation["category_id"] = label_to_num[label]
  51. annotation["id"] = object_id + 1
  52. return annotation
  53. def convert(self, image_dir, json_dir, dataset_save_dir):
  54. """转换。
  55. Args:
  56. image_dir (str): 图像文件存放的路径。
  57. json_dir (str): 与每张图像对应的json文件的存放路径。
  58. dataset_save_dir (str): 转换后数据集存放路径。
  59. """
  60. assert osp.exists(image_dir), "he image folder does not exist!"
  61. assert osp.exists(json_dir), "The json folder does not exist!"
  62. assert osp.exists(dataset_save_dir), "The save folder does not exist!"
  63. # Convert the image files.
  64. new_image_dir = osp.join(dataset_save_dir, "JPEGImages")
  65. if osp.exists(new_image_dir):
  66. shutil.rmtree(new_image_dir)
  67. os.makedirs(new_image_dir)
  68. for img_name in os.listdir(image_dir):
  69. if is_pic(img_name):
  70. shutil.copyfile(
  71. osp.join(image_dir, img_name),
  72. osp.join(new_image_dir, img_name))
  73. # Convert the json files.
  74. self.parse_json(new_image_dir, json_dir)
  75. coco_data = {}
  76. coco_data["images"] = self.images_list
  77. coco_data["categories"] = self.categories_list
  78. coco_data["annotations"] = self.annotations_list
  79. json_path = osp.join(dataset_save_dir, "annotations.json")
  80. json.dump(
  81. coco_data,
  82. open(json_path, "w"),
  83. indent=4,
  84. cls=MyEncoder)
  85. class LabelMe2COCO(X2COCO):
  86. """将使用LabelMe标注的数据集转换为COCO数据集。
  87. """
  88. def __init__(self):
  89. super(LabelMe2COCO, self).__init__()
  90. def generate_images_field(self, json_info, image_id):
  91. image = {}
  92. image["height"] = json_info["imageHeight"]
  93. image["width"] = json_info["imageWidth"]
  94. image["id"] = image_id + 1
  95. win_sep = "\\"
  96. other_sep = "/"
  97. if platform.system() == "Windows":
  98. json_info["imagePath"] = win_sep.join(json_info["imagePath"].split(other_sep))
  99. else:
  100. json_info["imagePath"] = other_sep.join(json_info["imagePath"].split(win_sep))
  101. image["file_name"] = osp.split(json_info["imagePath"])[-1]
  102. return image
  103. def generate_polygon_anns_field(self, height, width,
  104. points, label, image_id,
  105. object_id, label_to_num):
  106. annotation = {}
  107. annotation["segmentation"] = [list(np.asarray(points).flatten())]
  108. annotation["iscrowd"] = 0
  109. annotation["image_id"] = image_id + 1
  110. annotation["bbox"] = list(map(float, self.get_bbox(height, width, points)))
  111. annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
  112. annotation["category_id"] = label_to_num[label]
  113. annotation["id"] = object_id + 1
  114. return annotation
  115. def get_bbox(self, height, width, points):
  116. polygons = points
  117. mask = np.zeros([height, width], dtype=np.uint8)
  118. mask = PIL.Image.fromarray(mask)
  119. xy = list(map(tuple, polygons))
  120. PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  121. mask = np.array(mask, dtype=bool)
  122. index = np.argwhere(mask == 1)
  123. rows = index[:, 0]
  124. clos = index[:, 1]
  125. left_top_r = np.min(rows)
  126. left_top_c = np.min(clos)
  127. right_bottom_r = np.max(rows)
  128. right_bottom_c = np.max(clos)
  129. return [
  130. left_top_c, left_top_r, right_bottom_c - left_top_c,
  131. right_bottom_r - left_top_r
  132. ]
  133. def parse_json(self, img_dir, json_dir):
  134. image_id = -1
  135. object_id = -1
  136. labels_list = []
  137. label_to_num = {}
  138. for img_file in os.listdir(img_dir):
  139. img_name_part = osp.splitext(img_file)[0]
  140. json_file = osp.join(json_dir, img_name_part + ".json")
  141. if not osp.exists(json_file):
  142. os.remove(osp.join(image_dir, img_file))
  143. continue
  144. image_id = image_id + 1
  145. with open(json_file, mode='r', \
  146. encoding=get_encoding(json_file)) as j:
  147. json_info = json.load(j)
  148. img_info = self.generate_images_field(json_info, image_id)
  149. self.images_list.append(img_info)
  150. for shapes in json_info["shapes"]:
  151. object_id = object_id + 1
  152. label = shapes["label"]
  153. if label not in labels_list:
  154. self.categories_list.append(\
  155. self.generate_categories_field(label, labels_list))
  156. labels_list.append(label)
  157. label_to_num[label] = len(labels_list)
  158. points = shapes["points"]
  159. p_type = shapes["shape_type"]
  160. if p_type == "polygon":
  161. self.annotations_list.append(
  162. self.generate_polygon_anns_field(json_info["imageHeight"], json_info[
  163. "imageWidth"], points, label, image_id,
  164. object_id, label_to_num))
  165. if p_type == "rectangle":
  166. points.append([points[0][0], points[1][1]])
  167. points.append([points[1][0], points[0][1]])
  168. self.annotations_list.append(
  169. self.generate_rectangle_anns_field(points, label, image_id,
  170. object_id, label_to_num))
  171. class EasyData2COCO(X2COCO):
  172. """将使用EasyData标注的检测或分割数据集转换为COCO数据集。
  173. """
  174. def __init__(self):
  175. super(EasyData2COCO, self).__init__()
  176. def generate_images_field(self, img_path, image_id):
  177. image = {}
  178. img = cv2.imread(img_path)
  179. image["height"] = img.shape[0]
  180. image["width"] = img.shape[1]
  181. image["id"] = image_id + 1
  182. win_sep = "\\"
  183. other_sep = "/"
  184. if platform.system() == "Windows":
  185. img_path = win_sep.join(img_path.split(other_sep))
  186. else:
  187. img_path = other_sep.join(img_path.split(win_sep))
  188. image["file_name"] = osp.split(img_path)[-1]
  189. return image
  190. def generate_polygon_anns_field(self, points, segmentation,
  191. label, image_id, object_id,
  192. label_to_num):
  193. annotation = {}
  194. annotation["segmentation"] = segmentation
  195. annotation["iscrowd"] = 1 if len(segmentation) > 1 else 0
  196. annotation["image_id"] = image_id + 1
  197. annotation["bbox"] = list(map(float, [
  198. points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
  199. 1] - points[0][1]
  200. ]))
  201. annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
  202. annotation["category_id"] = label_to_num[label]
  203. annotation["id"] = object_id + 1
  204. return annotation
  205. def parse_json(self, img_dir, json_dir):
  206. from pycocotools.mask import decode
  207. image_id = -1
  208. object_id = -1
  209. labels_list = []
  210. label_to_num = {}
  211. for img_file in os.listdir(img_dir):
  212. img_name_part = osp.splitext(img_file)[0]
  213. json_file = osp.join(json_dir, img_name_part + ".json")
  214. if not osp.exists(json_file):
  215. os.remove(osp.join(image_dir, img_file))
  216. continue
  217. image_id = image_id + 1
  218. with open(json_file, mode='r', \
  219. encoding=get_encoding(json_file)) as j:
  220. json_info = json.load(j)
  221. img_info = self.generate_images_field(osp.join(img_dir, img_file), image_id)
  222. self.images_list.append(img_info)
  223. for shapes in json_info["labels"]:
  224. object_id = object_id + 1
  225. label = shapes["name"]
  226. if label not in labels_list:
  227. self.categories_list.append(\
  228. self.generate_categories_field(label, labels_list))
  229. labels_list.append(label)
  230. label_to_num[label] = len(labels_list)
  231. points = [[shapes["x1"], shapes["y1"]],
  232. [shapes["x2"], shapes["y2"]]]
  233. if "mask" not in shapes:
  234. points.append([points[0][0], points[1][1]])
  235. points.append([points[1][0], points[0][1]])
  236. self.annotations_list.append(
  237. self.generate_rectangle_anns_field(points, label, image_id,
  238. object_id, label_to_num))
  239. else:
  240. mask_dict = {}
  241. mask_dict['size'] = [img_info["height"], img_info["width"]]
  242. mask_dict['counts'] = shapes['mask'].encode()
  243. mask = decode(mask_dict)
  244. contours, hierarchy = cv2.findContours(
  245. (mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  246. segmentation = []
  247. for contour in contours:
  248. contour_list = contour.flatten().tolist()
  249. if len(contour_list) > 4:
  250. segmentation.append(contour_list)
  251. self.annotations_list.append(
  252. self.generate_polygon_anns_field(points, segmentation, label, image_id, object_id,
  253. label_to_num))
  254. class JingLing2COCO(X2COCO):
  255. """将使用EasyData标注的检测或分割数据集转换为COCO数据集。
  256. """
  257. def __init__(self):
  258. super(JingLing2COCO, self).__init__()
  259. def generate_images_field(self, json_info, image_id):
  260. image = {}
  261. image["height"] = json_info["size"]["height"]
  262. image["width"] = json_info["size"]["width"]
  263. image["id"] = image_id + 1
  264. win_sep = "\\"
  265. other_sep = "/"
  266. if platform.system() == "Windows":
  267. json_info["path"] = win_sep.join(json_info["path"].split(other_sep))
  268. else:
  269. json_info["path"] = other_sep.join(json_info["path"].split(win_sep))
  270. image["file_name"] = osp.split(json_info["path"])[-1]
  271. return image
  272. def generate_polygon_anns_field(self, height, width,
  273. points, label, image_id,
  274. object_id, label_to_num):
  275. annotation = {}
  276. annotation["segmentation"] = [list(np.asarray(points).flatten())]
  277. annotation["iscrowd"] = 0
  278. annotation["image_id"] = image_id + 1
  279. annotation["bbox"] = list(map(float, self.get_bbox(height, width, points)))
  280. annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
  281. annotation["category_id"] = label_to_num[label]
  282. annotation["id"] = object_id + 1
  283. return annotation
  284. def get_bbox(self, height, width, points):
  285. polygons = points
  286. mask = np.zeros([height, width], dtype=np.uint8)
  287. mask = PIL.Image.fromarray(mask)
  288. xy = list(map(tuple, polygons))
  289. PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  290. mask = np.array(mask, dtype=bool)
  291. index = np.argwhere(mask == 1)
  292. rows = index[:, 0]
  293. clos = index[:, 1]
  294. left_top_r = np.min(rows)
  295. left_top_c = np.min(clos)
  296. right_bottom_r = np.max(rows)
  297. right_bottom_c = np.max(clos)
  298. return [
  299. left_top_c, left_top_r, right_bottom_c - left_top_c,
  300. right_bottom_r - left_top_r
  301. ]
  302. def parse_json(self, img_dir, json_dir):
  303. image_id = -1
  304. object_id = -1
  305. labels_list = []
  306. label_to_num = {}
  307. for img_file in os.listdir(img_dir):
  308. img_name_part = osp.splitext(img_file)[0]
  309. json_file = osp.join(json_dir, img_name_part + ".json")
  310. if not osp.exists(json_file):
  311. os.remove(osp.join(image_dir, img_file))
  312. continue
  313. image_id = image_id + 1
  314. with open(json_file, mode='r', \
  315. encoding=get_encoding(json_file)) as j:
  316. json_info = json.load(j)
  317. img_info = self.generate_images_field(json_info, image_id)
  318. self.images_list.append(img_info)
  319. anns_type = "bndbox"
  320. for i, obj in enumerate(json_info["outputs"]["object"]):
  321. if i == 0:
  322. if "polygon" in obj:
  323. anns_type = "polygon"
  324. else:
  325. if anns_type not in obj:
  326. continue
  327. object_id = object_id + 1
  328. label = obj["name"]
  329. if label not in labels_list:
  330. self.categories_list.append(\
  331. self.generate_categories_field(label, labels_list))
  332. labels_list.append(label)
  333. label_to_num[label] = len(labels_list)
  334. if anns_type == "polygon":
  335. points = []
  336. for j in range(int(len(obj["polygon"]) / 2.0)):
  337. points.append([obj["polygon"]["x" + str(j + 1)],
  338. obj["polygon"]["y" + str(j + 1)]])
  339. self.annotations_list.append(
  340. self.generate_polygon_anns_field(json_info["size"]["height"],
  341. json_info["size"]["width"],
  342. points,
  343. label,
  344. image_id,
  345. object_id,
  346. label_to_num))
  347. if anns_type == "bndbox":
  348. points = []
  349. points.append([obj["bndbox"]["xmin"], obj["bndbox"]["ymin"]])
  350. points.append([obj["bndbox"]["xmax"], obj["bndbox"]["ymax"]])
  351. points.append([obj["bndbox"]["xmin"], obj["bndbox"]["ymax"]])
  352. points.append([obj["bndbox"]["xmax"], obj["bndbox"]["ymin"]])
  353. self.annotations_list.append(
  354. self.generate_rectangle_anns_field(points, label, image_id,
  355. object_id, label_to_num))