ppstructurev3_single_process.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. """PDF转图像后统一处理"""
  2. import json
  3. import time
  4. import os
  5. import traceback
  6. import argparse
  7. import sys
  8. import warnings
  9. from pathlib import Path
  10. from typing import List, Dict, Any, Union
  11. import cv2
  12. import numpy as np
  13. # 抑制特定警告
  14. warnings.filterwarnings("ignore", message="To copy construct from a tensor")
  15. warnings.filterwarnings("ignore", message="Setting `pad_token_id`")
  16. warnings.filterwarnings("ignore", category=UserWarning, module="paddlex")
  17. from paddlex import create_pipeline
  18. from paddlex.utils.device import constr_device, parse_device
  19. from tqdm import tqdm
  20. from dotenv import load_dotenv
  21. load_dotenv(override=True)
  22. from utils import (
  23. get_image_files_from_dir,
  24. get_image_files_from_list,
  25. get_image_files_from_csv,
  26. collect_pid_files,
  27. load_images_from_pdf
  28. )
  29. def convert_pdf_to_images(pdf_file: str, output_dir: str | None = None, dpi: int = 200) -> List[str]:
  30. """
  31. 将PDF转换为图像文件
  32. Args:
  33. pdf_file: PDF文件路径
  34. output_dir: 输出目录
  35. dpi: 图像分辨率
  36. Returns:
  37. 生成的图像文件路径列表
  38. """
  39. pdf_path = Path(pdf_file)
  40. if not pdf_path.exists() or pdf_path.suffix.lower() != '.pdf':
  41. print(f"❌ Invalid PDF file: {pdf_path}")
  42. return []
  43. # 如果没有指定输出目录,使用PDF同名目录
  44. if output_dir is None:
  45. output_path = pdf_path.parent / f"{pdf_path.stem}"
  46. else:
  47. output_path = Path(output_dir) / f"{pdf_path.stem}"
  48. output_path = output_path.resolve()
  49. output_path.mkdir(parents=True, exist_ok=True)
  50. try:
  51. # 使用doc_utils中的函数加载PDF图像
  52. images = load_images_from_pdf(str(pdf_path), dpi=dpi)
  53. image_paths = []
  54. for i, image in enumerate(images):
  55. # 生成图像文件名
  56. image_filename = f"{pdf_path.stem}_page_{i+1:03d}.png"
  57. image_path = output_path / image_filename
  58. # 保存图像
  59. image.save(str(image_path))
  60. image_paths.append(str(image_path))
  61. print(f"✅ Converted {len(images)} pages from {pdf_path.name} to images")
  62. return image_paths
  63. except Exception as e:
  64. print(f"❌ Error converting PDF {pdf_path}: {e}")
  65. traceback.print_exc()
  66. return []
  67. def get_input_files(args) -> List[str]:
  68. """
  69. 获取输入文件列表,统一处理PDF和图像文件
  70. Args:
  71. args: 命令行参数
  72. Returns:
  73. 处理后的图像文件路径列表
  74. """
  75. input_files = []
  76. # 获取原始输入文件
  77. if args.input_csv:
  78. raw_files = get_image_files_from_csv(args.input_csv, "fail")
  79. elif args.input_file_list:
  80. raw_files = get_image_files_from_list(args.input_file_list)
  81. elif args.input_file:
  82. raw_files = [Path(args.input_file).resolve()]
  83. else:
  84. input_dir = Path(args.input_dir).resolve()
  85. if not input_dir.exists():
  86. print(f"❌ Input directory does not exist: {input_dir}")
  87. return []
  88. # 获取所有支持的文件(图像和PDF)
  89. image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif']
  90. pdf_extensions = ['.pdf']
  91. raw_files = []
  92. for ext in image_extensions + pdf_extensions:
  93. raw_files.extend(list(input_dir.glob(f"*{ext}")))
  94. raw_files.extend(list(input_dir.glob(f"*{ext.upper()}")))
  95. raw_files = [str(f) for f in raw_files]
  96. # 分别处理PDF和图像文件
  97. pdf_count = 0
  98. image_count = 0
  99. for file_path in raw_files:
  100. file_path = Path(file_path)
  101. if file_path.suffix.lower() == '.pdf':
  102. # 转换PDF为图像
  103. print(f"📄 Processing PDF: {file_path.name}")
  104. pdf_images = convert_pdf_to_images(
  105. str(file_path),
  106. args.output_dir,
  107. dpi=args.pdf_dpi
  108. )
  109. input_files.extend(pdf_images)
  110. pdf_count += 1
  111. else:
  112. # 直接添加图像文件
  113. if file_path.exists():
  114. input_files.append(str(file_path))
  115. image_count += 1
  116. print(f"📊 Input summary:")
  117. print(f" PDF files processed: {pdf_count}")
  118. print(f" Image files found: {image_count}")
  119. print(f" Total image files to process: {len(input_files)}")
  120. return input_files
  121. def process_images_unified(image_paths: List[str],
  122. pipeline_name: str = "PP-StructureV3",
  123. device: str = "gpu:0",
  124. output_dir: str = "./output") -> List[Dict[str, Any]]:
  125. """
  126. 统一的图像处理函数(修改自ppstructurev3_single_process.py)
  127. """
  128. # 创建输出目录
  129. output_path = Path(output_dir)
  130. output_path.mkdir(parents=True, exist_ok=True)
  131. print(f"Initializing pipeline '{pipeline_name}' on device '{device}'...")
  132. try:
  133. # 设置环境变量以减少警告
  134. os.environ['PYTHONWARNINGS'] = 'ignore::UserWarning'
  135. # 初始化pipeline
  136. pipeline = create_pipeline(pipeline_name, device=device)
  137. print(f"Pipeline initialized successfully on {device}")
  138. except Exception as e:
  139. print(f"Failed to initialize pipeline: {e}", file=sys.stderr)
  140. traceback.print_exc()
  141. return []
  142. all_results = []
  143. total_images = len(image_paths)
  144. print(f"Processing {total_images} images one by one")
  145. # 使用tqdm显示进度
  146. with tqdm(total=total_images, desc="Processing images", unit="img",
  147. bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') as pbar:
  148. # 逐个处理图像
  149. for img_path in image_paths:
  150. start_time = time.time()
  151. try:
  152. # 使用pipeline预测单个图像
  153. results = pipeline.predict(
  154. img_path,
  155. use_doc_orientation_classify=True,
  156. use_doc_unwarping=False,
  157. use_seal_recognition=True,
  158. use_table_recognition=True,
  159. use_formula_recognition=False,
  160. use_chart_recognition=True,
  161. )
  162. processing_time = time.time() - start_time
  163. # 处理结果
  164. for result in results:
  165. try:
  166. input_path = Path(result["input_path"])
  167. # 生成输出文件名
  168. if result.get("page_index") is not None:
  169. output_filename = f"{input_path.stem}_{result['page_index']}"
  170. else:
  171. output_filename = f"{input_path.stem}"
  172. # 保存JSON和Markdown文件
  173. json_output_path = str(Path(output_dir, f"{output_filename}.json"))
  174. md_output_path = str(Path(output_dir, f"{output_filename}.md"))
  175. result.save_to_json(json_output_path)
  176. result.save_to_markdown(md_output_path)
  177. # 记录处理结果
  178. all_results.append({
  179. "image_path": str(input_path),
  180. "processing_time": processing_time,
  181. "success": True,
  182. "device": device,
  183. "output_json": json_output_path,
  184. "output_md": md_output_path,
  185. "is_pdf_page": "_page_" in input_path.name # 标记是否为PDF页面
  186. })
  187. except Exception as e:
  188. print(f"Error saving result for {result.get('input_path', 'unknown')}: {e}", file=sys.stderr)
  189. traceback.print_exc()
  190. all_results.append({
  191. "image_path": str(img_path),
  192. "processing_time": 0,
  193. "success": False,
  194. "device": device,
  195. "error": str(e)
  196. })
  197. # 更新进度条
  198. success_count = sum(1 for r in all_results if r.get('success', False))
  199. pbar.update(1)
  200. pbar.set_postfix({
  201. 'time': f"{processing_time:.2f}s",
  202. 'success': f"{success_count}/{len(all_results)}",
  203. 'rate': f"{success_count/len(all_results)*100:.1f}%"
  204. })
  205. except Exception as e:
  206. print(f"Error processing {Path(img_path).name}: {e}", file=sys.stderr)
  207. traceback.print_exc()
  208. # 添加错误结果
  209. all_results.append({
  210. "image_path": str(img_path),
  211. "processing_time": 0,
  212. "success": False,
  213. "device": device,
  214. "error": str(e)
  215. })
  216. pbar.update(1)
  217. return all_results
  218. def main():
  219. """主函数"""
  220. parser = argparse.ArgumentParser(description="PaddleX PP-StructureV3 Unified PDF/Image Processor")
  221. # 参数定义
  222. input_group = parser.add_mutually_exclusive_group(required=True)
  223. input_group.add_argument("--input_file", type=str, help="Input file (supports both PDF and image file)")
  224. input_group.add_argument("--input_dir", type=str, help="Input directory (supports both PDF and image files)")
  225. input_group.add_argument("--input_file_list", type=str, help="Input file list (one file per line)")
  226. input_group.add_argument("--input_csv", type=str, help="Input CSV file with image_path and status columns")
  227. parser.add_argument("--output_dir", type=str, required=True, help="Output directory")
  228. parser.add_argument("--pipeline", type=str, default="PP-StructureV3", help="Pipeline name")
  229. parser.add_argument("--device", type=str, default="gpu:0", help="Device string (e.g., 'gpu:0', 'cpu')")
  230. parser.add_argument("--pdf_dpi", type=int, default=200, help="DPI for PDF to image conversion")
  231. parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 20 files)")
  232. parser.add_argument("--collect_results", type=str, help="收集处理结果到指定CSV文件")
  233. args = parser.parse_args()
  234. try:
  235. # 获取并预处理输入文件
  236. print("🔄 Preprocessing input files...")
  237. input_files = get_input_files(args)
  238. if not input_files:
  239. print("❌ No input files found or processed")
  240. return 1
  241. if args.test_mode:
  242. input_files = input_files[:20]
  243. print(f"Test mode: processing only {len(input_files)} images")
  244. print(f"Using device: {args.device}")
  245. # 开始处理
  246. start_time = time.time()
  247. results = process_images_unified(
  248. input_files,
  249. args.pipeline,
  250. args.device,
  251. args.output_dir
  252. )
  253. total_time = time.time() - start_time
  254. # 统计结果
  255. success_count = sum(1 for r in results if r.get('success', False))
  256. error_count = len(results) - success_count
  257. pdf_page_count = sum(1 for r in results if r.get('is_pdf_page', False))
  258. print(f"\n" + "="*60)
  259. print(f"✅ Processing completed!")
  260. print(f"📊 Statistics:")
  261. print(f" Total files processed: {len(input_files)}")
  262. print(f" PDF pages processed: {pdf_page_count}")
  263. print(f" Regular images processed: {len(input_files) - pdf_page_count}")
  264. print(f" Successful: {success_count}")
  265. print(f" Failed: {error_count}")
  266. if len(input_files) > 0:
  267. print(f" Success rate: {success_count / len(input_files) * 100:.2f}%")
  268. print(f"⏱️ Performance:")
  269. print(f" Total time: {total_time:.2f} seconds")
  270. if total_time > 0:
  271. print(f" Throughput: {len(input_files) / total_time:.2f} files/second")
  272. print(f" Avg time per file: {total_time / len(input_files):.2f} seconds")
  273. # 保存结果统计
  274. stats = {
  275. "total_files": len(input_files),
  276. "pdf_pages": pdf_page_count,
  277. "regular_images": len(input_files) - pdf_page_count,
  278. "success_count": success_count,
  279. "error_count": error_count,
  280. "success_rate": success_count / len(input_files) if len(input_files) > 0 else 0,
  281. "total_time": total_time,
  282. "throughput": len(input_files) / total_time if total_time > 0 else 0,
  283. "avg_time_per_file": total_time / len(input_files) if len(input_files) > 0 else 0,
  284. "device": args.device,
  285. "pipeline": args.pipeline,
  286. "pdf_dpi": args.pdf_dpi,
  287. "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
  288. }
  289. # 保存最终结果
  290. output_file_name = Path(args.output_dir).name
  291. output_file = os.path.join(args.output_dir, f"{output_file_name}_unified.json")
  292. final_results = {
  293. "stats": stats,
  294. "results": results
  295. }
  296. with open(output_file, 'w', encoding='utf-8') as f:
  297. json.dump(final_results, f, ensure_ascii=False, indent=2)
  298. print(f"💾 Results saved to: {output_file}")
  299. # 如果没有收集结果的路径,使用缺省文件名,和output_dir同一路径
  300. if not args.collect_results:
  301. output_file_processed = Path(args.output_dir) / f"processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv"
  302. else:
  303. output_file_processed = Path(args.collect_results).resolve()
  304. processed_files = collect_pid_files(output_file)
  305. with open(output_file_processed, 'w', encoding='utf-8') as f:
  306. f.write("image_path,status\n")
  307. for file_path, status in processed_files:
  308. f.write(f"{file_path},{status}\n")
  309. print(f"💾 Processed files saved to: {output_file_processed}")
  310. return 0
  311. except Exception as e:
  312. print(f"❌ Processing failed: {e}", file=sys.stderr)
  313. traceback.print_exc()
  314. return 1
  315. if __name__ == "__main__":
  316. print(f"🚀 启动统一PDF/图像处理程序...")
  317. print(f"🔧 CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
  318. if len(sys.argv) == 1:
  319. # 如果没有命令行参数,使用默认配置运行
  320. print("ℹ️ No command line arguments provided. Running with default configuration...")
  321. # 默认配置(删除了 batch_size)
  322. default_config = {
  323. "input_dir": "../../OmniDocBench/OpenDataLab___OmniDocBench/images",
  324. "output_dir": "./OmniDocBench_PPStructureV3_Results",
  325. "pipeline": "./my_config/PP-StructureV3.yaml",
  326. "device": "gpu:0",
  327. "collect_results": f"./OmniDocBench_PPStructureV3_Results/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv",
  328. }
  329. # default_config = {
  330. # "input_csv": "./OmniDocBench_PPStructureV3_Results/processed_files.csv",
  331. # "output_dir": "./OmniDocBench_PPStructureV3_Results",
  332. # "pipeline": "./my_config/PP-StructureV3.yaml",
  333. # "device": "gpu:0",
  334. # "collect_results": f"./OmniDocBench_PPStructureV3_Results/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv",
  335. # }
  336. # 构造参数
  337. sys.argv = [sys.argv[0]]
  338. for key, value in default_config.items():
  339. sys.argv.extend([f"--{key}", str(value)])
  340. # 测试模式
  341. # sys.argv.append("--test_mode")
  342. sys.exit(main())