| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List
- from fastapi import FastAPI, HTTPException
- from pydantic import BaseModel, Field
- from typing_extensions import Annotated
- from .....utils import logging
- from ...single_model_pipeline import SemanticSegmentation
- from .. import utils as serving_utils
- from ..app import AppConfig, create_app
- from ..models import Response, ResultResponse
- class InferRequest(BaseModel):
- image: str
- class InferResult(BaseModel):
- labelMap: List[int]
- size: Annotated[List[int], Field(min_length=2, max_length=2)]
- image: str
- def create_pipeline_app(
- pipeline: SemanticSegmentation, app_config: AppConfig
- ) -> FastAPI:
- app, ctx = create_app(
- pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
- )
- @app.post(
- "/semantic-segmentation",
- operation_id="infer",
- responses={422: {"model": Response}},
- )
- async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
- pipeline = ctx.pipeline
- aiohttp_session = ctx.aiohttp_session
- try:
- file_bytes = await serving_utils.get_raw_bytes(
- request.image, aiohttp_session
- )
- image = serving_utils.image_bytes_to_array(file_bytes)
- result = (await pipeline.infer(image))[0]
- pred = result["pred"][0].tolist()
- size = [len(pred), len(pred[0])]
- label_map = [item for sublist in pred for item in sublist]
- output_image_base64 = serving_utils.base64_encode(
- serving_utils.image_to_bytes(result.img.convert("RGB"))
- )
- return ResultResponse(
- logId=serving_utils.generate_log_id(),
- errorCode=0,
- errorMsg="Success",
- result=InferResult(
- labelMap=label_map, size=size, image=output_image_base64
- ),
- )
- except Exception as e:
- logging.exception(e)
- raise HTTPException(status_code=500, detail="Internal server error")
- return app
|