ppyolotiny.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压昆虫检测数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
  10. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  11. T.RandomHorizontalFlip(), T.BatchRandomResize(
  12. target_sizes=[192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512],
  13. interp='RANDOM'), T.Normalize(
  14. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  15. ])
  16. eval_transforms = T.Compose([
  17. T.Resize(
  18. target_size=320, interp='CUBIC'), T.Normalize(
  19. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  20. ])
  21. # 定义训练和验证所用的数据集
  22. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  23. train_dataset = pdx.datasets.VOCDetection(
  24. data_dir='insect_det',
  25. file_list='insect_det/train_list.txt',
  26. label_list='insect_det/labels.txt',
  27. transforms=train_transforms,
  28. shuffle=True)
  29. eval_dataset = pdx.datasets.VOCDetection(
  30. data_dir='insect_det',
  31. file_list='insect_det/val_list.txt',
  32. label_list='insect_det/labels.txt',
  33. transforms=eval_transforms,
  34. shuffle=False)
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
  37. num_classes = len(train_dataset.labels)
  38. model = pdx.det.PPYOLOTiny(num_classes=num_classes)
  39. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
  40. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
  41. model.train(
  42. num_epochs=550,
  43. train_dataset=train_dataset,
  44. train_batch_size=16,
  45. eval_dataset=eval_dataset,
  46. pretrain_weights='COCO',
  47. learning_rate=0.005,
  48. warmup_steps=1000,
  49. warmup_start_lr=0.0,
  50. lr_decay_epochs=[130, 540],
  51. lr_decay_gamma=.5,
  52. save_interval_epochs=5,
  53. save_dir='output/ppyolotiny',
  54. use_vdl=True)