| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import os.path as osp
- import numpy as np
- from . import fd_logging as logging
- from .util import is_pic, get_num_workers
- class CocoDetection(object):
- """读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。
- Args:
- data_dir (str): 数据集所在的目录路径。
- ann_file (str): 数据集的标注文件,为一个独立的json格式文件。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- allow_empty (bool): 是否加载负样本。默认为False。
- empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。
- """
- def __init__(
- self,
- data_dir,
- ann_file,
- num_workers="auto",
- shuffle=False,
- allow_empty=False,
- empty_ratio=1.0,
- ):
- from pycocotools.coco import COCO
- self.data_dir = data_dir
- self.data_fields = None
- self.num_max_boxes = 1000
- self.num_workers = get_num_workers(num_workers)
- self.shuffle = shuffle
- self.allow_empty = allow_empty
- self.empty_ratio = empty_ratio
- self.file_list = list()
- neg_file_list = list()
- self.labels = list()
- coco = COCO(ann_file)
- self.coco_gt = coco
- img_ids = sorted(coco.getImgIds())
- cat_ids = coco.getCatIds()
- catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
- cname2clsid = dict(
- {
- coco.loadCats(catid)[0]["name"]: clsid
- for catid, clsid in catid2clsid.items()
- }
- )
- for label, cid in sorted(cname2clsid.items(), key=lambda d: d[1]):
- self.labels.append(label)
- logging.info("Starting to read file list from dataset...")
- ct = 0
- for img_id in img_ids:
- is_empty = False
- img_anno = coco.loadImgs(img_id)[0]
- im_fname = osp.join(data_dir, img_anno["file_name"])
- if not is_pic(im_fname):
- continue
- im_w = float(img_anno["width"])
- im_h = float(img_anno["height"])
- ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
- instances = coco.loadAnns(ins_anno_ids)
- bboxes = []
- for inst in instances:
- x, y, box_w, box_h = inst["bbox"]
- x1 = max(0, x)
- y1 = max(0, y)
- x2 = min(im_w - 1, x1 + max(0, box_w))
- y2 = min(im_h - 1, y1 + max(0, box_h))
- if inst["area"] > 0 and x2 >= x1 and y2 >= y1:
- inst["clean_bbox"] = [x1, y1, x2, y2]
- bboxes.append(inst)
- else:
- logging.warning(
- "Found an invalid bbox in annotations: "
- "im_id: {}, area: {} x1: {}, y1: {}, x2: {}, y2: {}.".format(
- img_id, float(inst["area"]), x1, y1, x2, y2
- )
- )
- num_bbox = len(bboxes)
- if num_bbox == 0 and not self.allow_empty:
- continue
- elif num_bbox == 0:
- is_empty = True
- gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
- gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_score = np.ones((num_bbox, 1), dtype=np.float32)
- is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
- difficult = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_poly = [None] * num_bbox
- has_segmentation = False
- for i, box in reversed(list(enumerate(bboxes))):
- catid = box["category_id"]
- gt_class[i][0] = catid2clsid[catid]
- gt_bbox[i, :] = box["clean_bbox"]
- is_crowd[i][0] = box["iscrowd"]
- if "segmentation" in box and box["iscrowd"] == 1:
- gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
- elif "segmentation" in box and box["segmentation"]:
- if (
- not np.array(box["segmentation"], dtype=object).size > 0
- and not self.allow_empty
- ):
- gt_poly.pop(i)
- is_crowd = np.delete(is_crowd, i)
- gt_class = np.delete(gt_class, i)
- gt_bbox = np.delete(gt_bbox, i)
- else:
- gt_poly[i] = box["segmentation"]
- has_segmentation = True
- if has_segmentation and not any(gt_poly) and not self.allow_empty:
- continue
- im_info = {
- "im_id": np.array([img_id]).astype("int32"),
- "image_shape": np.array([im_h, im_w]).astype("int32"),
- }
- label_info = {
- "is_crowd": is_crowd,
- "gt_class": gt_class,
- "gt_bbox": gt_bbox,
- "gt_score": gt_score,
- "gt_poly": gt_poly,
- "difficult": difficult,
- }
- if is_empty:
- neg_file_list.append({"image": im_fname, **im_info, **label_info})
- else:
- self.file_list.append({"image": im_fname, **im_info, **label_info})
- ct += 1
- self.num_max_boxes = max(self.num_max_boxes, len(instances))
- if not ct:
- logging.error("No coco record found in %s' % (ann_file)", exit=True)
- self.pos_num = len(self.file_list)
- if self.allow_empty and neg_file_list:
- self.file_list += self._sample_empty(neg_file_list)
- logging.info(
- "{} samples in file {}, including {} positive samples and {} negative samples.".format(
- len(self.file_list),
- ann_file,
- self.pos_num,
- len(self.file_list) - self.pos_num,
- )
- )
- self.num_samples = len(self.file_list)
- self._epoch = 0
|