| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import six
- import numpy as np
- def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
- det_res = []
- for i in range(bbox_nums):
- cur_image_id = int(image_id)
- dt = bboxes[i]
- num_id, score, xmin, ymin, xmax, ymax = dt
- if int(num_id) < 0:
- continue
- category_id = label_to_cat_id_map[int(num_id)]
- w = xmax - xmin + bias
- h = ymax - ymin + bias
- bbox = [xmin, ymin, w, h]
- dt_res = {
- "image_id": cur_image_id,
- "category_id": category_id,
- "bbox": bbox,
- "score": score,
- }
- det_res.append(dt_res)
- return det_res
- def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
- det_res = []
- k = 0
- for i in range(len(bbox_nums)):
- cur_image_id = int(image_id[i][0])
- det_nums = bbox_nums[i]
- for j in range(det_nums):
- dt = bboxes[k]
- k = k + 1
- num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
- if int(num_id) < 0:
- continue
- category_id = label_to_cat_id_map[int(num_id)]
- rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
- dt_res = {
- "image_id": cur_image_id,
- "category_id": category_id,
- "bbox": rbox,
- "score": score,
- }
- det_res.append(dt_res)
- return det_res
- def strip_mask(mask):
- row = mask[0, 0, :]
- col = mask[0, :, 0]
- im_h = len(col) - np.count_nonzero(col == -1)
- im_w = len(row) - np.count_nonzero(row == -1)
- return mask[:, :im_h, :im_w]
- def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
- import pycocotools.mask as mask_util
- seg_res = []
- k = 0
- for i in range(len(mask_nums)):
- cur_image_id = int(image_id[i][0])
- det_nums = mask_nums[i]
- mask_i = masks[k : k + det_nums]
- mask_i = strip_mask(mask_i)
- for j in range(det_nums):
- mask = mask_i[j].astype(np.uint8)
- score = float(bboxes[k][1])
- label = int(bboxes[k][0])
- k = k + 1
- if label == -1:
- continue
- cat_id = label_to_cat_id_map[label]
- rle = mask_util.encode(
- np.array(mask[:, :, None], order="F", dtype="uint8")
- )[0]
- if six.PY3:
- if "counts" in rle:
- rle["counts"] = rle["counts"].decode("utf8")
- sg_res = {
- "image_id": cur_image_id,
- "category_id": cat_id,
- "segmentation": rle,
- "score": score,
- }
- seg_res.append(sg_res)
- return seg_res
- def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
- import pycocotools.mask as mask_util
- segm_res = []
- # for each batch
- segms = results["segm"].astype(np.uint8)
- clsid_labels = results["cate_label"]
- clsid_scores = results["cate_score"]
- lengths = segms.shape[0]
- im_id = int(image_id[0][0])
- if lengths == 0 or segms is None:
- return None
- # for each sample
- for i in range(lengths - 1):
- clsid = int(clsid_labels[i])
- catid = num_id_to_cat_id_map[clsid]
- score = float(clsid_scores[i])
- mask = segms[i]
- segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order="F"))[0]
- segm["counts"] = segm["counts"].decode("utf8")
- coco_res = {
- "image_id": im_id,
- "category_id": catid,
- "segmentation": segm,
- "score": score,
- }
- segm_res.append(coco_res)
- return segm_res
- def get_keypoint_res(results, im_id):
- anns = []
- preds = results["keypoint"]
- for idx in range(im_id.shape[0]):
- image_id = im_id[idx].item()
- kpts, scores = preds[idx]
- for kpt, score in zip(kpts, scores):
- kpt = kpt.flatten()
- ann = {
- "image_id": image_id,
- "category_id": 1, # XXX hard code
- "keypoints": kpt.tolist(),
- "score": float(score),
- }
- x = kpt[0::3]
- y = kpt[1::3]
- x0, x1, y0, y1 = (
- np.min(x).item(),
- np.max(x).item(),
- np.min(y).item(),
- np.max(y).item(),
- )
- ann["area"] = (x1 - x0) * (y1 - y0)
- ann["bbox"] = [x0, y0, x1 - x0, y1 - y0]
- anns.append(ann)
- return anns
|