| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- def f1_score(intersect_area, pred_area, label_area):
- class_f1_sco = []
- for i in range(len(intersect_area)):
- if pred_area[i] + label_area[i] == 0:
- f1_sco = 0
- elif pred_area[i] == 0:
- f1_sco = 0
- else:
- prec = intersect_area[i] / pred_area[i]
- rec = intersect_area[i] / label_area[i]
- f1_sco = 2 * prec * rec / (prec + rec)
- class_f1_sco.append(f1_sco)
- return np.array(class_f1_sco)
- def calculate_area(pred, label, num_classes, ignore_index=255):
- """
- Calculate intersect, prediction and label area
- Args:
- pred (np.ndarray): The prediction by model.
- label (np.ndarray): The ground truth of image.
- num_classes (int): The unique number of target classes.
- ignore_index (int): Specifies a target value that is ignored. Default: 255.
- Returns:
- Numpy Array: The intersection area of prediction and the ground on all class.
- Numpy Array: The prediction area on all class.
- Numpy Array: The ground truth area on all class
- """
- if not pred.shape == label.shape:
- raise ValueError(
- "Shape of `pred` and `label should be equal, "
- "but there are {} and {}.".format(pred.shape, label.shape)
- )
- mask = label != ignore_index
- pred = pred + 1
- label = label + 1
- pred = pred * mask
- label = label * mask
- pred = np.eye(num_classes + 1)[pred]
- label = np.eye(num_classes + 1)[label]
- pred = pred[:, 1:]
- label = label[:, 1:]
- pred_area = []
- label_area = []
- intersect_area = []
- for i in range(num_classes):
- pred_i = pred[:, :, i]
- label_i = label[:, :, i]
- pred_area_i = np.sum(pred_i)
- label_area_i = np.sum(label_i)
- intersect_area_i = np.sum(pred_i * label_i)
- pred_area.append(pred_area_i)
- label_area.append(label_area_i)
- intersect_area.append(intersect_area_i)
- return np.array(intersect_area), np.array(pred_area), np.array(label_area)
- def mean_iou(intersect_area, pred_area, label_area):
- """
- Calculate iou.
- Args:
- intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes.
- pred_area (np.ndarray): The prediction area on all classes.
- label_area (np.ndarray): The ground truth area on all classes.
- Returns:
- np.ndarray: iou on all classes.
- float: mean iou of all classes.
- """
- union = pred_area + label_area - intersect_area
- class_iou = []
- for i in range(len(intersect_area)):
- if union[i] == 0:
- iou = 0
- else:
- iou = intersect_area[i] / union[i]
- class_iou.append(iou)
- miou = np.mean(class_iou)
- return np.array(class_iou), miou
- def accuracy(intersect_area, pred_area):
- """
- Calculate accuracy
- Args:
- intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
- pred_area (np.ndarray): The prediction area on all classes.
- Returns:
- np.ndarray: accuracy on all classes.
- float: mean accuracy.
- """
- class_acc = []
- for i in range(len(intersect_area)):
- if pred_area[i] == 0:
- acc = 0
- else:
- acc = intersect_area[i] / pred_area[i]
- class_acc.append(acc)
- macc = np.sum(intersect_area) / np.sum(pred_area)
- return np.array(class_acc), macc
- def kappa(intersect_area, pred_area, label_area):
- """
- Calculate kappa coefficient
- Args:
- intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
- pred_area (np.ndarray): The prediction area on all classes.
- label_area (np.ndarray): The ground truth area on all classes.
- Returns:
- float: kappa coefficient.
- """
- total_area = np.sum(label_area)
- po = np.sum(intersect_area) / total_area
- pe = np.sum(pred_area * label_area) / (total_area * total_area)
- kappa = (po - pe) / (1 - pe)
- return kappa
|