| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- from typing import Union
- from ...base import BaseConfig
- from ....utils.misc import abspath
- from ..config_utils import load_config, merge_config
- class TextRecConfig(BaseConfig):
- """ Text Recognition Config """
- def update(self, dict_like_obj: list):
- """update self
- Args:
- dict_like_obj (dict): dict of pairs(key0.key1.idx.key2=value).
- """
- dict_ = merge_config(self.dict, dict_like_obj)
- self.reset_from_dict(dict_)
- def load(self, config_file_path: str):
- """load config from yaml file
- Args:
- config_file_path (str): the path of yaml file.
- Raises:
- TypeError: the content of yaml file `config_file_path` error.
- """
- dict_ = load_config(config_file_path)
- if not isinstance(dict_, dict):
- raise TypeError
- self.reset_from_dict(dict_)
- def dump(self, config_file_path: str):
- """dump self to yaml file
- Args:
- config_file_path (str): the path to save self as yaml file.
- """
- with open(config_file_path, 'w', encoding='utf-8') as f:
- yaml.dump(self.dict, f, default_flow_style=False, sort_keys=False)
- def update_dataset(
- self,
- dataset_path: str,
- dataset_type: str=None,
- *,
- train_list_path: str=None, ):
- """update dataset settings
- Args:
- dataset_path (str): the root path of dataset.
- dataset_type (str, optional): dataset type. Defaults to None.
- train_list_path (str, optional): the path of train dataset annotation file . Defaults to None.
- Raises:
- ValueError: the dataset_type error.
- """
- dataset_path = abspath(dataset_path)
- if dataset_type is None:
- dataset_type = 'TextRecDataset'
- if train_list_path:
- train_list_path = f"{train_list_path}"
- else:
- train_list_path = os.path.join(dataset_path, 'train.txt')
- if (dataset_type == 'TextRecDataset') or (
- dataset_type == "MSTextRecDataset"):
- _cfg = {
- 'Train.dataset.name': dataset_type,
- 'Train.dataset.data_dir': dataset_path,
- 'Train.dataset.label_file_list': [train_list_path],
- 'Eval.dataset.name': 'TextRecDataset',
- 'Eval.dataset.data_dir': dataset_path,
- 'Eval.dataset.label_file_list':
- [os.path.join(dataset_path, 'val.txt')],
- 'Global.character_dict_path':
- os.path.join(dataset_path, 'dict.txt')
- }
- self.update(_cfg)
- elif dataset_type == "LaTeXOCRDataSet":
- _cfg = {
- 'Train.dataset.name': dataset_type,
- 'Train.dataset.data_dir': dataset_path,
- 'Train.dataset.data':
- os.path.join(dataset_path, "latexocr_train.pkl"),
- 'Train.dataset.label_file_list': [train_list_path],
- 'Eval.dataset.name': dataset_type,
- 'Eval.dataset.data_dir': dataset_path,
- 'Eval.dataset.data':
- os.path.join(dataset_path, "latexocr_val.pkl"),
- 'Eval.dataset.label_file_list':
- [os.path.join(dataset_path, 'val.txt')],
- 'Global.character_dict_path':
- os.path.join(dataset_path, 'dict.txt')
- }
- self.update(_cfg)
- else:
- raise ValueError(f"{repr(dataset_type)} is not supported.")
- def update_batch_size(self, batch_size: int, mode: str='train'):
- """update batch size setting
- Args:
- batch_size (int): the batch size number to set.
- mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: mode error.
- """
- _cfg = {
- 'Train.loader.batch_size_per_card': batch_size,
- 'Eval.loader.batch_size_per_card': batch_size,
- }
- if "sampler" in self.dict['Train']:
- _cfg['Train.sampler.first_bs'] = batch_size
- self.update(_cfg)
- def update_batch_size_pair(self,
- batch_size_train: int,
- batch_size_val: int,
- mode: str='train'):
- """update batch size setting
- Args:
- batch_size (int): the batch size number to set.
- mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: mode error.
- """
- _cfg = {
- 'Train.dataset.batch_size_per_pair': batch_size_train,
- 'Eval.dataset.batch_size_per_pair': batch_size_val,
- }
- # if "sampler" in self.dict['Train']:
- # _cfg['Train.sampler.first_bs'] = 1
- self.update(_cfg)
- def update_learning_rate(self, learning_rate: float):
- """update learning rate
- Args:
- learning_rate (float): the learning rate value to set.
- """
- _cfg = {'Optimizer.lr.learning_rate': learning_rate, }
- self.update(_cfg)
- def update_label_dict_path(self, dict_path: str):
- """update label dict file path
- Args:
- dict_path (str): the path to label dict file.
- """
- _cfg = {'Global.character_dict_path': abspath(dict_path), }
- self.update(_cfg)
- def update_warmup_epochs(self, warmup_epochs: int):
- """update warmup epochs
- Args:
- warmup_epochs (int): the warmup epochs value to set.
- """
- _cfg = {'Optimizer.lr.warmup_epoch': warmup_epochs}
- self.update(_cfg)
- def update_pretrained_weights(self, pretrained_model: str):
- """update pretrained weight path
- Args:
- pretrained_model (str): the local path or url of pretrained weight file to set.
- """
- if pretrained_model:
- if not pretrained_model.startswith(
- 'http://') and not pretrained_model.startswith('https://'):
- pretrained_model = abspath(pretrained_model)
- self.update({
- 'Global.pretrained_model': pretrained_model,
- 'Global.checkpoints': ''
- })
- # TODO
- def update_class_path(self, class_path: str):
- """_summary_
- Args:
- class_path (str): _description_
- """
- self.update({'PostProcess.class_path': class_path, })
- def _update_amp(self, amp: Union[None, str]):
- """update AMP settings
- Args:
- amp (None | str): the AMP level if it is not None or `OFF`.
- """
- _cfg = {
- 'Global.use_amp': amp is not None and amp != 'OFF',
- 'Global.amp_level': amp,
- }
- self.update(_cfg)
- def update_device(self, device: str):
- """update device setting
- Args:
- device (str): the running device to set
- """
- device = device.split(':')[0]
- default_cfg = {
- 'Global.use_gpu': False,
- 'Global.use_xpu': False,
- 'Global.use_npu': False,
- 'Global.use_mlu': False,
- }
- device_cfg = {
- 'cpu': {},
- 'gpu': {
- 'Global.use_gpu': True
- },
- 'xpu': {
- 'Global.use_xpu': True
- },
- 'mlu': {
- 'Global.use_mlu': True
- },
- 'npu': {
- 'Global.use_npu': True
- }
- }
- default_cfg.update(device_cfg[device])
- self.update(default_cfg)
- def _update_epochs(self, epochs: int):
- """update epochs setting
- Args:
- epochs (int): the epochs number value to set
- """
- self.update({'Global.epoch_num': epochs})
- def _update_checkpoints(self, resume_path: Union[None, str]):
- """update checkpoint setting
- Args:
- resume_path (None | str): the resume training setting. if is `None`, train from scratch, otherwise,
- train from checkpoint file that path is `.pdparams` file.
- """
- self.update({
- 'Global.checkpoints': abspath(resume_path),
- 'Global.pretrained_model': ''
- })
- def _update_to_static(self, dy2st: bool):
- """update config to set dynamic to static mode
- Args:
- dy2st (bool): whether or not to use the dynamic to static mode.
- """
- self.update({'Global.to_static': dy2st})
- def _update_use_vdl(self, use_vdl: bool):
- """update config to set VisualDL
- Args:
- use_vdl (bool): whether or not to use VisualDL.
- """
- self.update({'Global.use_visualdl': use_vdl})
- def _update_output_dir(self, save_dir: str):
- """update output directory
- Args:
- save_dir (str): the path to save output.
- """
- self.update({'Global.save_model_dir': abspath(save_dir)})
- # TODO
- # def _update_log_interval(self, log_interval):
- # self.update({'Global.print_batch_step': log_interval})
- def update_log_interval(self, log_interval: int):
- """update log interval(by steps)
- Args:
- log_interval (int): the log interval value to set.
- """
- self.update({'Global.print_batch_step': log_interval})
- # def _update_eval_interval(self, eval_start_step, eval_interval):
- # self.update({
- # 'Global.eval_batch_step': [eval_start_step, eval_interval]
- # })
- def update_log_ranks(self, device):
- """update log ranks
- Args:
- device (str): the running device to set
- """
- log_ranks = device.split(':')[1]
- self.update({'Global.log_ranks': log_ranks})
- def update_print_mem_info(self, print_mem_info: bool):
- """setting print memory info"""
- assert isinstance(print_mem_info,
- bool), "print_mem_info should be a bool"
- self.update({'Global.print_mem_info': f'{print_mem_info}'})
- def update_shared_memory(self, shared_memeory: bool):
- """update shared memory setting of train and eval dataloader
-
- Args:
- shared_memeory (bool): whether or not to use shared memory
- """
- assert isinstance(shared_memeory,
- bool), "shared_memeory should be a bool"
- _cfg = {
- 'Train.loader.use_shared_memory': f'{shared_memeory}',
- 'Train.loader.use_shared_memory': f'{shared_memeory}',
- }
- self.update(_cfg)
- def update_shuffle(self, shuffle: bool):
- """update shuffle setting of train and eval dataloader
-
- Args:
- shuffle (bool): whether or not to shuffle the data
- """
- assert isinstance(shuffle, bool), "shuffle should be a bool"
- _cfg = {
- f'Train.loader.shuffle': shuffle,
- f'Train.loader.shuffle': shuffle,
- }
- self.update(_cfg)
- def update_cal_metrics(self, cal_metrics: bool):
- """update calculate metrics setting
- Args:
- cal_metrics (bool): whether or not to calculate metrics during train
- """
- assert isinstance(cal_metrics, bool), "cal_metrics should be a bool"
- self.update({'Global.cal_metric_during_train': cal_metrics})
- def update_seed(self, seed: int):
- """update seed
- Args:
- seed (int): the random seed value to set
- """
- assert isinstance(seed, int), "seed should be an int"
- self.update({'Global.seed': seed})
- def _update_eval_interval_by_epoch(self, eval_interval):
- """update eval interval(by epoch)
- Args:
- eval_interval (int): the eval interval value to set.
- """
- self.update({'Global.eval_batch_epoch': eval_interval})
- def update_eval_interval(self, eval_interval: int, eval_start_step: int=0):
- """update eval interval(by steps)
- Args:
- eval_interval (int): the eval interval value to set.
- eval_start_step (int, optional): step number from which the evaluation is enabled. Defaults to 0.
- """
- self._update_eval_interval(eval_start_step, eval_interval)
- def _update_save_interval(self, save_interval: int):
- """update save interval(by steps)
- Args:
- save_interval (int): the save interval value to set.
- """
- self.update({'Global.save_epoch_step': save_interval})
- def update_save_interval(self, save_interval: int):
- """update save interval(by steps)
- Args:
- save_interval (int): the save interval value to set.
- """
- self._update_save_interval(save_interval)
- def _update_infer_img(self, infer_img: str, infer_list: str=None):
- """update image list to be infered
- Args:
- infer_img (str): path to the image file to be infered. It would be ignored when `infer_list` is be set.
- infer_list (str, optional): path to the .txt file containing the paths to image to be infered.
- Defaults to None.
- """
- if infer_list:
- self.update({'Global.infer_list': infer_list})
- self.update({'Global.infer_img': infer_img})
- def _update_save_inference_dir(self, save_inference_dir: str):
- """update the directory saving infer outputs
- Args:
- save_inference_dir (str): the directory saving infer outputs.
- """
- self.update({'Global.save_inference_dir': abspath(save_inference_dir)})
- def _update_save_res_path(self, save_res_path: str):
- """update the .txt file path saving OCR model inference result
- Args:
- save_res_path (str): the .txt file path saving OCR model inference result.
- """
- self.update({'Global.save_res_path': abspath(save_res_path)})
- def update_num_workers(self,
- num_workers: int,
- modes: Union[str, list]=['train', 'eval']):
- """update workers number of train or eval dataloader
- Args:
- num_workers (int): the value of train and eval dataloader workers number to set.
- modes (str | [list], optional): mode. Defaults to ['train', 'eval'].
- Raises:
- ValueError: mode error. The `mode` should be `train`, `eval` or `['train', 'eval']`.
- """
- if not isinstance(modes, list):
- modes = [modes]
- for mode in modes:
- if not mode in ('train', 'eval'):
- raise ValueError
- if mode == 'train':
- self['Train']['loader']['num_workers'] = num_workers
- else:
- self['Eval']['loader']['num_workers'] = num_workers
- def _get_model_type(self) -> str:
- """get model type
- Returns:
- str: model type, i.e. `Architecture.algorithm` or `Architecture.Models.Student.algorithm`.
- """
- if 'Models' in self.dict['Architecture']:
- return self.dict['Architecture']['Models']['Student']['algorithm']
- return self.dict['Architecture']['algorithm']
- def get_epochs_iters(self) -> int:
- """get epochs
- Returns:
- int: the epochs value, i.e., `Global.epochs` in config.
- """
- return self.dict['Global']['epoch_num']
- def get_learning_rate(self) -> float:
- """get learning rate
- Returns:
- float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config.
- """
- return self.dict['Optimizer']['lr']['learning_rate']
- def get_batch_size(self, mode='train') -> int:
- """get batch size
- Args:
- mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Returns:
- int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config.
- """
- return self.dict['Train']['loader']['batch_size_per_card']
- def get_qat_epochs_iters(self) -> int:
- """get qat epochs
- Returns:
- int: the epochs value.
- """
- return self.get_epochs_iters()
- def get_qat_learning_rate(self) -> float:
- """get qat learning rate
- Returns:
- float: the learning rate value.
- """
- return self.get_learning_rate()
- def get_label_dict_path(self) -> str:
- """get label dict file path
- Returns:
- str: the label dict file path, i.e., `Global.character_dict_path` in config.
- """
- return self.dict['Global']['character_dict_path']
- def _get_dataset_root(self) -> str:
- """get root directory of dataset, i.e. `DataLoader.Train.dataset.data_dir`
- Returns:
- str: the root directory of dataset
- """
- return self.dict['Train']['dataset']['data_dir']
- def _get_infer_shape(self) -> str:
- """get resize scale of ResizeImg operation in the evaluation
- Returns:
- str: resize scale, i.e. `Eval.dataset.transforms.ResizeImg.image_shape`
- """
- size = None
- transforms = self.dict['Eval']['dataset']['transforms']
- for op in transforms:
- op_name = list(op)[0]
- if 'ResizeImg' in op_name:
- size = op[op_name]['image_shape']
- return ','.join([str(x) for x in size])
- def get_train_save_dir(self) -> str:
- """get the directory to save output
- Returns:
- str: the directory to save output
- """
- return self['Global']['save_model_dir']
- def get_predict_save_dir(self) -> str:
- """get the directory to save output in predicting
- Returns:
- str: the directory to save output
- """
- return os.path.dirname(self['Global']['save_res_path'])
|