general_recognition.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.general_recognition.model_list import MODELS
  17. from ..components import *
  18. from ..results import BaseResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import CVPredictor
  21. class ShiTuRecPredictor(CVPredictor):
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _build_components(self):
  26. self._add_component(ReadImage(format="RGB"))
  27. for cfg in self.config["PreProcess"]["transform_ops"]:
  28. tf_key = list(cfg.keys())[0]
  29. func = self._FUNC_MAP[tf_key]
  30. args = cfg.get(tf_key, {})
  31. op = func(self, **args) if args else func(self)
  32. self._add_component(op)
  33. predictor = ImagePredictor(
  34. model_dir=self.model_dir,
  35. model_prefix=self.MODEL_FILE_PREFIX,
  36. option=self.pp_option,
  37. )
  38. self._add_component(("Predictor", predictor))
  39. post_processes = self.config["PostProcess"]
  40. for key in post_processes:
  41. func = self._FUNC_MAP.get(key)
  42. args = post_processes.get(key, {})
  43. op = func(self, **args) if args else func(self)
  44. self._add_component(op)
  45. @register("ResizeImage")
  46. # TODO(gaotingquan): backend & interpolation
  47. def build_resize(
  48. self,
  49. resize_short=None,
  50. size=None,
  51. backend="cv2",
  52. interpolation="LINEAR",
  53. return_numpy=False,
  54. ):
  55. assert resize_short or size
  56. if resize_short:
  57. op = ResizeByShort(
  58. target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
  59. )
  60. else:
  61. op = Resize(target_size=size)
  62. return op
  63. @register("CropImage")
  64. def build_crop(self, size=224):
  65. return Crop(crop_size=size)
  66. @register("NormalizeImage")
  67. def build_normalize(
  68. self,
  69. mean=[0.485, 0.456, 0.406],
  70. std=[0.229, 0.224, 0.225],
  71. scale=1 / 255,
  72. order="",
  73. channel_num=3,
  74. ):
  75. assert channel_num == 3
  76. return Normalize(mean=mean, std=std)
  77. @register("ToCHWImage")
  78. def build_to_chw(self):
  79. return ToCHWImage()
  80. @register("NormalizeFeatures")
  81. def build_normalize_features(self):
  82. return NormalizeFeatures()
  83. @batchable_method
  84. def _pack_res(self, data):
  85. keys = ["img_path", "rec_feature"]
  86. return {"result": BaseResult({key: data[key] for key in keys})}