| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict
- from fastapi import FastAPI
- from ...base import BasePipeline
- from ...formula_recognition import FormulaRecognitionPipeline
- from ...layout_parsing import LayoutParsingPipeline
- from ...ocr import OCRPipeline
- from ...ppchatocrv3 import PPChatOCRPipeline
- from ...seal_recognition import SealOCRPipeline
- from ...single_model_pipeline import (
- AnomalyDetection,
- ImageClassification,
- InstanceSegmentation,
- MultiLableImageClas,
- ObjectDetection,
- SemanticSegmentation,
- SmallObjDet,
- TSAd,
- TSCls,
- TSFc,
- )
- from ...table_recognition import TableRecPipeline
- from ..app import create_app_config
- from .anomaly_detection import create_pipeline_app as create_anomaly_detection_app
- from .formula_recognition import create_pipeline_app as create_formula_recognition_app
- from .layout_parsing import create_pipeline_app as create_layout_parsing_app
- from .image_classification import create_pipeline_app as create_image_classification_app
- from .instance_segmentation import (
- create_pipeline_app as create_instance_segmentation_app,
- )
- from .multi_label_image_classification import (
- create_pipeline_app as create_multi_label_image_classification_app,
- )
- from .object_detection import create_pipeline_app as create_object_detection_app
- from .ocr import create_pipeline_app as create_ocr_app
- from .ppchatocrv3 import create_pipeline_app as create_ppchatocrv3_app
- from .seal_recognition import create_pipeline_app as create_seal_recognition_app
- from .semantic_segmentation import (
- create_pipeline_app as create_semantic_segmentation_app,
- )
- from .small_object_detection import (
- create_pipeline_app as create_small_object_detection_app,
- )
- from .table_recognition import create_pipeline_app as create_table_recognition_app
- from .ts_ad import create_pipeline_app as create_ts_ad_app
- from .ts_cls import create_pipeline_app as create_ts_cls_app
- from .ts_fc import create_pipeline_app as create_ts_fc_app
- # XXX (Bobholamovic): This is tightly coupled to the name-pipeline mapping,
- # which is dirty but necessary. I want to keep the pipeline definition code
- # untouched while adding the pipeline serving feature. Each pipeline app depends
- # on a specific pipeline class, and a pipeline name must be provided (in the
- # pipeline config) to specify the type of the pipeline.
- def create_pipeline_app(
- pipeline: BasePipeline, pipeline_config: Dict[str, Any]
- ) -> FastAPI:
- pipeline_name = pipeline_config["Global"]["pipeline_name"]
- app_config = create_app_config(pipeline_config)
- if pipeline_name == "image_classification":
- if not isinstance(pipeline, ImageClassification):
- raise TypeError(
- "Expected `pipeline` to be an instance of `ImageClassification`."
- )
- return create_image_classification_app(pipeline, app_config)
- elif pipeline_name == "instance_segmentation":
- if not isinstance(pipeline, InstanceSegmentation):
- raise TypeError(
- "Expected `pipeline` to be an instance of `InstanceSegmentation`."
- )
- return create_instance_segmentation_app(pipeline, app_config)
- elif pipeline_name == "object_detection":
- if not isinstance(pipeline, ObjectDetection):
- raise TypeError(
- "Expected `pipeline` to be an instance of `ObjectDetection`."
- )
- return create_object_detection_app(pipeline, app_config)
- elif pipeline_name == "OCR":
- if not isinstance(pipeline, OCRPipeline):
- raise TypeError("Expected `pipeline` to be an instance of `OCRPipeline`.")
- return create_ocr_app(pipeline, app_config)
- elif pipeline_name == "semantic_segmentation":
- if not isinstance(pipeline, SemanticSegmentation):
- raise TypeError(
- "Expected `pipeline` to be an instance of `SemanticSegmentation`."
- )
- return create_semantic_segmentation_app(pipeline, app_config)
- elif pipeline_name == "table_recognition":
- if not isinstance(pipeline, TableRecPipeline):
- raise TypeError(
- "Expected `pipeline` to be an instance of `TableRecPipeline`."
- )
- return create_table_recognition_app(pipeline, app_config)
- elif pipeline_name == "ts_ad":
- if not isinstance(pipeline, TSAd):
- raise TypeError("Expected `pipeline` to be an instance of `TSAd`.")
- return create_ts_ad_app(pipeline, app_config)
- elif pipeline_name == "ts_cls":
- if not isinstance(pipeline, TSCls):
- raise TypeError("Expected `pipeline` to be an instance of `TSCls`.")
- return create_ts_cls_app(pipeline, app_config)
- elif pipeline_name == "ts_fc":
- if not isinstance(pipeline, TSFc):
- raise TypeError("Expected `pipeline` to be an instance of `TSFc`.")
- return create_ts_fc_app(pipeline, app_config)
- elif pipeline_name == "multi_label_image_classification":
- if not isinstance(pipeline, MultiLableImageClas):
- raise TypeError(
- "Expected `pipeline` to be an instance of `MultiLableImageClas`."
- )
- return create_multi_label_image_classification_app(pipeline, app_config)
- elif pipeline_name == "small_object_detection":
- if not isinstance(pipeline, SmallObjDet):
- raise TypeError("Expected `pipeline` to be an instance of `SmallObjDet`.")
- return create_small_object_detection_app(pipeline, app_config)
- elif pipeline_name == "anomaly_detection":
- if not isinstance(pipeline, AnomalyDetection):
- raise TypeError(
- "Expected `pipeline` to be an instance of `AnomalyDetection`."
- )
- return create_anomaly_detection_app(pipeline, app_config)
- elif pipeline_name == "PP-ChatOCRv3-doc":
- if not isinstance(pipeline, PPChatOCRPipeline):
- raise TypeError(
- "Expected `pipeline` to be an instance of `PPChatOCRPipeline`."
- )
- return create_ppchatocrv3_app(pipeline, app_config)
- elif pipeline_name == "seal_recognition":
- if not isinstance(pipeline, SealOCRPipeline):
- raise TypeError(
- "Expected `pipeline` to be an instance of `SealOCRPipeline`."
- )
- return create_seal_recognition_app(pipeline, app_config)
- elif pipeline_name == "formula_recognition":
- if not isinstance(pipeline, FormulaRecognitionPipeline):
- raise TypeError(
- "Expected `pipeline` to be an instance of `FormulaRecognitionPipeline`."
- )
- return create_formula_recognition_app(pipeline, app_config)
- elif pipeline_name == "layout_parsing":
- if not isinstance(pipeline, LayoutParsingPipeline):
- raise TypeError(
- "Expected `pipeline` to be an instance of `LayoutParsingPipeline`."
- )
- return create_layout_parsing_app(pipeline, app_config)
- else:
- if BasePipeline.get(pipeline_name):
- raise ValueError(
- f"The {pipeline_name} pipeline does not support pipeline serving."
- )
- else:
- raise ValueError("Unknown pipeline name")
|