small_object_detection.py 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import List
  15. from fastapi import FastAPI, HTTPException
  16. from pydantic import BaseModel, Field
  17. from typing_extensions import Annotated, TypeAlias
  18. from .....utils import logging
  19. from ...single_model_pipeline import SmallObjDet
  20. from .. import utils as serving_utils
  21. from ..app import AppConfig, create_app
  22. from ..models import Response, ResultResponse
  23. class InferRequest(BaseModel):
  24. image: str
  25. BoundingBox: TypeAlias = Annotated[List[float], Field(min_length=4, max_length=4)]
  26. class DetectedObject(BaseModel):
  27. bbox: BoundingBox
  28. categoryId: int
  29. score: float
  30. class InferResult(BaseModel):
  31. detectedObjects: List[DetectedObject]
  32. image: str
  33. def create_pipeline_app(pipeline: SmallObjDet, app_config: AppConfig) -> FastAPI:
  34. app, ctx = create_app(
  35. pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
  36. )
  37. @app.post(
  38. "/object-detection", operation_id="infer", responses={422: {"model": Response}}
  39. )
  40. async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
  41. pipeline = ctx.pipeline
  42. aiohttp_session = ctx.aiohttp_session
  43. try:
  44. file_bytes = await serving_utils.get_raw_bytes(
  45. request.image, aiohttp_session
  46. )
  47. image = serving_utils.image_bytes_to_array(file_bytes)
  48. result = (await pipeline.infer(image))[0]
  49. objects: List[DetectedObject] = []
  50. for obj in result["boxes"]:
  51. objects.append(
  52. DetectedObject(
  53. bbox=obj["coordinate"],
  54. categoryId=obj["cls_id"],
  55. score=obj["score"],
  56. )
  57. )
  58. output_image_base64 = serving_utils.image_to_base64(result.img)
  59. return ResultResponse(
  60. logId=serving_utils.generate_log_id(),
  61. errorCode=0,
  62. errorMsg="Success",
  63. result=InferResult(detectedObjects=objects, image=output_image_base64),
  64. )
  65. except Exception as e:
  66. logging.exception(e)
  67. raise HTTPException(status_code=500, detail="Internal server error")
  68. return app