| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import asyncio
- import base64
- import io
- import uuid
- from functools import partial
- from typing import Awaitable, Callable, List, Optional, TypeVar
- from urllib.parse import urlparse
- import aiohttp
- import cv2
- import fitz
- import numpy as np
- import pandas as pd
- import yarl
- from PIL import Image
- from typing_extensions import ParamSpec
- _P = ParamSpec("_P")
- _R = TypeVar("_R")
- def generate_log_id() -> str:
- return str(uuid.uuid4())
- def is_url(s: str) -> bool:
- if not (s.startswith("http://") or s.startswith("https://")):
- # Quick rejection
- return False
- result = urlparse(s)
- return all([result.scheme, result.netloc]) and result.scheme in ("http", "https")
- async def get_raw_bytes(file: str, session: aiohttp.ClientSession) -> bytes:
- if is_url(file):
- async with session.get(yarl.URL(file, encoded=True)) as resp:
- return await resp.read()
- else:
- return base64.b64decode(file)
- def image_bytes_to_array(data: bytes) -> np.ndarray:
- return cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR)
- def image_to_base64(image: Image.Image) -> str:
- with io.BytesIO() as f:
- image.save(f, format="JPEG")
- image_base64 = base64.b64encode(f.getvalue()).decode("ascii")
- return image_base64
- def csv_bytes_to_data_frame(data: bytes) -> pd.DataFrame:
- with io.StringIO(data.decode("utf-8")) as f:
- df = pd.read_csv(f)
- return df
- def data_frame_to_base64(df: str) -> str:
- return base64.b64encode(df.to_csv().encode("utf-8")).decode("ascii")
- def read_pdf(
- bytes_: bytes, resize: bool = False, max_num_imgs: Optional[int] = None
- ) -> List[np.ndarray]:
- images: List[np.ndarray] = []
- img_size = None
- with fitz.open("pdf", bytes_) as doc:
- for page in doc:
- if max_num_imgs is not None and len(images) >= max_num_imgs:
- break
- # TODO: Do not always use zoom=2.0
- zoom = 2.0
- deg = 0
- mat = fitz.Matrix(zoom, zoom).prerotate(deg)
- pixmap = page.get_pixmap(matrix=mat, alpha=False)
- image = np.frombuffer(pixmap.samples, dtype=np.uint8).reshape(
- pixmap.h, pixmap.w, pixmap.n
- )
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
- if resize:
- if img_size is None:
- img_size = (image.shape[1], image.shape[0])
- else:
- if (image.shape[1], image.shape[0]) != img_size:
- image = cv2.resize(image, img_size)
- images.append(image)
- return images
- def call_async(
- func: Callable[_P, _R], /, *args: _P.args, **kwargs: _P.kwargs
- ) -> Awaitable[_R]:
- return asyncio.get_running_loop().run_in_executor(
- None, partial(func, *args, **kwargs)
- )
|