| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional
- import numpy as np
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- # [TODO] 待更新models_new到models
- from ...models_new.instance_segmentation.result import InstanceSegResult
- class InstanceSegmentationPipeline(BasePipeline):
- """Instance Segmentation Pipeline"""
- entities = "instance_segmentation"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- instance_segmentation_model_config = config["SubModules"][
- "InstanceSegmentation"
- ]
- self.instance_segmentation_model = self.create_model(
- instance_segmentation_model_config
- )
- self.threshold = instance_segmentation_model_config["threshold"]
- def predict(
- self, input: str | list[str] | np.ndarray | list[np.ndarray], **kwargs
- ) -> InstanceSegResult:
- """Predicts instance segmentation results for the given input.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- InstanceSegResult: The predicted instance segmentation results.
- """
- yield from self.instance_segmentation_model(input, threshold=self.threshold)
|