pipeline.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional
  15. import numpy as np
  16. from scipy.ndimage import rotate
  17. from ...common.reader import ReadImage
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from ..base import BasePipeline
  21. from ..components import (
  22. CropByPolys,
  23. SortQuadBoxes,
  24. SortPolyBoxes,
  25. convert_points_to_boxes,
  26. )
  27. from .result import OCRResult
  28. from ..doc_preprocessor.result import DocPreprocessorResult
  29. from ....utils import logging
  30. class OCRPipeline(BasePipeline):
  31. """OCR Pipeline"""
  32. entities = "OCR"
  33. def __init__(
  34. self,
  35. config: Dict,
  36. device: Optional[str] = None,
  37. pp_option: Optional[PaddlePredictorOption] = None,
  38. use_hpip: bool = False,
  39. hpi_params: Optional[Dict[str, Any]] = None,
  40. ) -> None:
  41. """
  42. Initializes the class with given configurations and options.
  43. Args:
  44. config (Dict): Configuration dictionary containing various settings.
  45. device (str, optional): Device to run the predictions on. Defaults to None.
  46. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  47. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  48. hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
  49. """
  50. super().__init__(
  51. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  52. )
  53. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  54. if self.use_doc_preprocessor:
  55. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  56. "DocPreprocessor",
  57. {
  58. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  59. },
  60. )
  61. self.doc_preprocessor_pipeline = self.create_pipeline(
  62. doc_preprocessor_config
  63. )
  64. self.use_textline_orientation = config.get("use_textline_orientation", True)
  65. if self.use_textline_orientation:
  66. textline_orientation_config = config.get("SubModules", {}).get(
  67. "TextLineOrientation",
  68. {"model_config_error": "config error for textline_orientation_model!"},
  69. )
  70. # TODO: add batch_size
  71. # batch_size = textline_orientation_config.get("batch_size", 1)
  72. # self.textline_orientation_model = self.create_model(
  73. # textline_orientation_config, batch_size=batch_size
  74. # )
  75. self.textline_orientation_model = self.create_model(
  76. textline_orientation_config
  77. )
  78. text_det_config = config.get("SubModules", {}).get(
  79. "TextDetection", {"model_config_error": "config error for text_det_model!"}
  80. )
  81. self.text_type = config["text_type"]
  82. if self.text_type == "general":
  83. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
  84. self.text_det_limit_type = text_det_config.get("limit_type", "max")
  85. self.text_det_thresh = text_det_config.get("thresh", 0.3)
  86. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  87. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
  88. self._sort_boxes = SortQuadBoxes()
  89. self._crop_by_polys = CropByPolys(det_box_type="quad")
  90. elif self.text_type == "seal":
  91. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
  92. self.text_det_limit_type = text_det_config.get("limit_type", "min")
  93. self.text_det_thresh = text_det_config.get("thresh", 0.2)
  94. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  95. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
  96. self._sort_boxes = SortPolyBoxes()
  97. self._crop_by_polys = CropByPolys(det_box_type="poly")
  98. else:
  99. raise ValueError("Unsupported text type {}".format(self.text_type))
  100. self.text_det_model = self.create_model(
  101. text_det_config,
  102. limit_side_len=self.text_det_limit_side_len,
  103. limit_type=self.text_det_limit_type,
  104. thresh=self.text_det_thresh,
  105. box_thresh=self.text_det_box_thresh,
  106. unclip_ratio=self.text_det_unclip_ratio,
  107. )
  108. text_rec_config = config.get("SubModules", {}).get(
  109. "TextRecognition",
  110. {"model_config_error": "config error for text_rec_model!"},
  111. )
  112. # TODO: add batch_size
  113. # batch_size = text_rec_config.get("batch_size", 1)
  114. # self.text_rec_model = self.create_model(text_rec_config,
  115. # batch_size=batch_size)
  116. self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
  117. self.text_rec_model = self.create_model(text_rec_config)
  118. self.batch_sampler = ImageBatchSampler(batch_size=1)
  119. self.img_reader = ReadImage(format="BGR")
  120. def rotate_image(
  121. self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
  122. ) -> List[np.ndarray]:
  123. """
  124. Rotate the given image arrays by their corresponding angles.
  125. 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
  126. Args:
  127. image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
  128. rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
  129. 0 means rotate by 0 degrees
  130. 1 means rotate by 180 degrees
  131. Returns:
  132. List[np.ndarray]: A list of rotated image arrays.
  133. Raises:
  134. AssertionError: If any rotate_angle is not 0 or 1.
  135. AssertionError: If the lengths of input lists don't match.
  136. """
  137. assert len(image_array_list) == len(
  138. rotate_angle_list
  139. ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
  140. for angle in rotate_angle_list:
  141. assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
  142. rotated_images = []
  143. for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
  144. # Convert 0/1 indicator to actual rotation angle
  145. rotate_angle = rotate_indicator * 180
  146. rotated_image = rotate(image_array, rotate_angle, reshape=True)
  147. rotated_images.append(rotated_image)
  148. return rotated_images
  149. def check_model_settings_valid(self, model_settings: Dict) -> bool:
  150. """
  151. Check if the input parameters are valid based on the initialized models.
  152. Args:
  153. model_info_params(Dict): A dictionary containing input parameters.
  154. Returns:
  155. bool: True if all required models are initialized according to input parameters, False otherwise.
  156. """
  157. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  158. logging.error(
  159. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  160. )
  161. return False
  162. if (
  163. model_settings["use_textline_orientation"]
  164. and not self.use_textline_orientation
  165. ):
  166. logging.error(
  167. "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
  168. )
  169. return False
  170. return True
  171. def get_model_settings(
  172. self,
  173. use_doc_orientation_classify: Optional[bool],
  174. use_doc_unwarping: Optional[bool],
  175. use_textline_orientation: Optional[bool],
  176. ) -> dict:
  177. """
  178. Get the model settings based on the provided parameters or default values.
  179. Args:
  180. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  181. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  182. use_textline_orientation (Optional[bool]): Whether to use textline orientation.
  183. Returns:
  184. dict: A dictionary containing the model settings.
  185. """
  186. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  187. use_doc_preprocessor = self.use_doc_preprocessor
  188. else:
  189. use_doc_preprocessor = True
  190. if use_textline_orientation is None:
  191. use_textline_orientation = self.use_textline_orientation
  192. return dict(
  193. use_doc_preprocessor=use_doc_preprocessor,
  194. use_textline_orientation=use_textline_orientation,
  195. )
  196. def get_text_det_params(
  197. self,
  198. text_det_limit_side_len: Optional[int] = None,
  199. text_det_limit_type: Optional[str] = None,
  200. text_det_thresh: Optional[float] = None,
  201. text_det_box_thresh: Optional[float] = None,
  202. text_det_unclip_ratio: Optional[float] = None,
  203. ) -> dict:
  204. """
  205. Get text detection parameters.
  206. If a parameter is None, its default value from the instance will be used.
  207. Args:
  208. text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
  209. text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
  210. text_det_thresh (Optional[float]): The threshold for text detection.
  211. text_det_box_thresh (Optional[float]): The threshold for the bounding box.
  212. text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
  213. Returns:
  214. dict: A dictionary containing the text detection parameters.
  215. """
  216. if text_det_limit_side_len is None:
  217. text_det_limit_side_len = self.text_det_limit_side_len
  218. if text_det_limit_type is None:
  219. text_det_limit_type = self.text_det_limit_type
  220. if text_det_thresh is None:
  221. text_det_thresh = self.text_det_thresh
  222. if text_det_box_thresh is None:
  223. text_det_box_thresh = self.text_det_box_thresh
  224. if text_det_unclip_ratio is None:
  225. text_det_unclip_ratio = self.text_det_unclip_ratio
  226. return dict(
  227. limit_side_len=text_det_limit_side_len,
  228. limit_type=text_det_limit_type,
  229. thresh=text_det_thresh,
  230. box_thresh=text_det_box_thresh,
  231. unclip_ratio=text_det_unclip_ratio,
  232. )
  233. def predict(
  234. self,
  235. input: str | list[str] | np.ndarray | list[np.ndarray],
  236. use_doc_orientation_classify: Optional[bool] = None,
  237. use_doc_unwarping: Optional[bool] = None,
  238. use_textline_orientation: Optional[bool] = None,
  239. text_det_limit_side_len: Optional[int] = None,
  240. text_det_limit_type: Optional[str] = None,
  241. text_det_thresh: Optional[float] = None,
  242. text_det_box_thresh: Optional[float] = None,
  243. text_det_unclip_ratio: Optional[float] = None,
  244. text_rec_score_thresh: Optional[float] = None,
  245. ) -> OCRResult:
  246. """
  247. Predict OCR results based on input images or arrays with optional preprocessing steps.
  248. Args:
  249. input (str | list[str] | np.ndarray | list[np.ndarray]): Input image of pdf path(s) or numpy array(s).
  250. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  251. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  252. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  253. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  254. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  255. text_det_thresh (Optional[float]): Threshold for text detection.
  256. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  257. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  258. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  259. Returns:
  260. OCRResult: Generator yielding OCR results for each input image.
  261. """
  262. model_settings = self.get_model_settings(
  263. use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
  264. )
  265. if not self.check_model_settings_valid(model_settings):
  266. yield {"error": "the input params for model settings are invalid!"}
  267. text_det_params = self.get_text_det_params(
  268. text_det_limit_side_len,
  269. text_det_limit_type,
  270. text_det_thresh,
  271. text_det_box_thresh,
  272. text_det_unclip_ratio,
  273. )
  274. if text_rec_score_thresh is None:
  275. text_rec_score_thresh = self.text_rec_score_thresh
  276. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  277. if not isinstance(batch_data[0], str):
  278. # TODO: add support input_pth for ndarray and pdf
  279. input_path = f"{img_id}"
  280. else:
  281. input_path = batch_data[0]
  282. image_array = self.img_reader(batch_data)[0]
  283. if model_settings["use_doc_preprocessor"]:
  284. doc_preprocessor_res = next(
  285. self.doc_preprocessor_pipeline(
  286. image_array,
  287. use_doc_orientation_classify=use_doc_orientation_classify,
  288. use_doc_unwarping=use_doc_unwarping,
  289. )
  290. )
  291. else:
  292. doc_preprocessor_res = {"output_img": image_array}
  293. doc_preprocessor_image = doc_preprocessor_res["output_img"]
  294. det_res = next(
  295. self.text_det_model(doc_preprocessor_image, **text_det_params)
  296. )
  297. dt_polys = det_res["dt_polys"]
  298. dt_scores = det_res["dt_scores"]
  299. dt_polys = self._sort_boxes(dt_polys)
  300. single_img_res = {
  301. "input_path": input_path,
  302. "doc_preprocessor_res": doc_preprocessor_res,
  303. "dt_polys": dt_polys,
  304. "model_settings": model_settings,
  305. "text_det_params": text_det_params,
  306. "text_type": self.text_type,
  307. "text_rec_score_thresh": text_rec_score_thresh,
  308. }
  309. single_img_res["rec_texts"] = []
  310. single_img_res["rec_scores"] = []
  311. single_img_res["rec_polys"] = []
  312. if len(dt_polys) > 0:
  313. all_subs_of_img = list(
  314. self._crop_by_polys(doc_preprocessor_image, dt_polys)
  315. )
  316. # use textline orientation model
  317. if model_settings["use_textline_orientation"]:
  318. angles = [
  319. textline_angle_info["class_ids"][0]
  320. for textline_angle_info in self.textline_orientation_model(
  321. all_subs_of_img
  322. )
  323. ]
  324. single_img_res["textline_orientation_angle"] = angles
  325. all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
  326. rno = -1
  327. for rec_res in self.text_rec_model(all_subs_of_img):
  328. rno += 1
  329. if rec_res["rec_score"] >= text_rec_score_thresh:
  330. single_img_res["rec_texts"].append(rec_res["rec_text"])
  331. single_img_res["rec_scores"].append(rec_res["rec_score"])
  332. single_img_res["rec_polys"].append(dt_polys[rno])
  333. rec_boxes = convert_points_to_boxes(single_img_res["rec_polys"])
  334. single_img_res["rec_boxes"] = rec_boxes
  335. yield OCRResult(single_img_res)