| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional
- import numpy as np
- from scipy.ndimage import rotate
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- from ..components import (
- CropByPolys,
- SortQuadBoxes,
- SortPolyBoxes,
- convert_points_to_boxes,
- )
- from .result import OCRResult
- from ..doc_preprocessor.result import DocPreprocessorResult
- from ....utils import logging
- class OCRPipeline(BasePipeline):
- """OCR Pipeline"""
- entities = "OCR"
- def __init__(
- self,
- config: Dict,
- device: Optional[str] = None,
- pp_option: Optional[PaddlePredictorOption] = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config.get("SubPipelines", {}).get(
- "DocPreprocessor",
- {
- "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
- },
- )
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- self.use_textline_orientation = config.get("use_textline_orientation", True)
- if self.use_textline_orientation:
- textline_orientation_config = config.get("SubModules", {}).get(
- "TextLineOrientation",
- {"model_config_error": "config error for textline_orientation_model!"},
- )
- # TODO: add batch_size
- # batch_size = textline_orientation_config.get("batch_size", 1)
- # self.textline_orientation_model = self.create_model(
- # textline_orientation_config, batch_size=batch_size
- # )
- self.textline_orientation_model = self.create_model(
- textline_orientation_config
- )
- text_det_config = config.get("SubModules", {}).get(
- "TextDetection", {"model_config_error": "config error for text_det_model!"}
- )
- self.text_type = config["text_type"]
- if self.text_type == "general":
- self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
- self.text_det_limit_type = text_det_config.get("limit_type", "max")
- self.text_det_thresh = text_det_config.get("thresh", 0.3)
- self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
- self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
- self._sort_boxes = SortQuadBoxes()
- self._crop_by_polys = CropByPolys(det_box_type="quad")
- elif self.text_type == "seal":
- self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
- self.text_det_limit_type = text_det_config.get("limit_type", "min")
- self.text_det_thresh = text_det_config.get("thresh", 0.2)
- self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
- self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
- self._sort_boxes = SortPolyBoxes()
- self._crop_by_polys = CropByPolys(det_box_type="poly")
- else:
- raise ValueError("Unsupported text type {}".format(self.text_type))
- self.text_det_model = self.create_model(
- text_det_config,
- limit_side_len=self.text_det_limit_side_len,
- limit_type=self.text_det_limit_type,
- thresh=self.text_det_thresh,
- box_thresh=self.text_det_box_thresh,
- unclip_ratio=self.text_det_unclip_ratio,
- )
- text_rec_config = config.get("SubModules", {}).get(
- "TextRecognition",
- {"model_config_error": "config error for text_rec_model!"},
- )
- # TODO: add batch_size
- # batch_size = text_rec_config.get("batch_size", 1)
- # self.text_rec_model = self.create_model(text_rec_config,
- # batch_size=batch_size)
- self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
- self.text_rec_model = self.create_model(text_rec_config)
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def rotate_image(
- self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
- ) -> List[np.ndarray]:
- """
- Rotate the given image arrays by their corresponding angles.
- 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
- Args:
- image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
- rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
- 0 means rotate by 0 degrees
- 1 means rotate by 180 degrees
- Returns:
- List[np.ndarray]: A list of rotated image arrays.
- Raises:
- AssertionError: If any rotate_angle is not 0 or 1.
- AssertionError: If the lengths of input lists don't match.
- """
- assert len(image_array_list) == len(
- rotate_angle_list
- ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
- for angle in rotate_angle_list:
- assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
- rotated_images = []
- for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
- # Convert 0/1 indicator to actual rotation angle
- rotate_angle = rotate_indicator * 180
- rotated_image = rotate(image_array, rotate_angle, reshape=True)
- rotated_images.append(rotated_image)
- return rotated_images
- def check_model_settings_valid(self, model_settings: Dict) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- model_info_params(Dict): A dictionary containing input parameters.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if (
- model_settings["use_textline_orientation"]
- and not self.use_textline_orientation
- ):
- logging.error(
- "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
- )
- return False
- return True
- def get_model_settings(
- self,
- use_doc_orientation_classify: Optional[bool],
- use_doc_unwarping: Optional[bool],
- use_textline_orientation: Optional[bool],
- ) -> dict:
- """
- Get the model settings based on the provided parameters or default values.
- Args:
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_textline_orientation (Optional[bool]): Whether to use textline orientation.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None and use_doc_unwarping is None:
- use_doc_preprocessor = self.use_doc_preprocessor
- else:
- use_doc_preprocessor = True
- if use_textline_orientation is None:
- use_textline_orientation = self.use_textline_orientation
- return dict(
- use_doc_preprocessor=use_doc_preprocessor,
- use_textline_orientation=use_textline_orientation,
- )
- def get_text_det_params(
- self,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- ) -> dict:
- """
- Get text detection parameters.
- If a parameter is None, its default value from the instance will be used.
- Args:
- text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
- text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
- text_det_thresh (Optional[float]): The threshold for text detection.
- text_det_box_thresh (Optional[float]): The threshold for the bounding box.
- text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
- Returns:
- dict: A dictionary containing the text detection parameters.
- """
- if text_det_limit_side_len is None:
- text_det_limit_side_len = self.text_det_limit_side_len
- if text_det_limit_type is None:
- text_det_limit_type = self.text_det_limit_type
- if text_det_thresh is None:
- text_det_thresh = self.text_det_thresh
- if text_det_box_thresh is None:
- text_det_box_thresh = self.text_det_box_thresh
- if text_det_unclip_ratio is None:
- text_det_unclip_ratio = self.text_det_unclip_ratio
- return dict(
- limit_side_len=text_det_limit_side_len,
- limit_type=text_det_limit_type,
- thresh=text_det_thresh,
- box_thresh=text_det_box_thresh,
- unclip_ratio=text_det_unclip_ratio,
- )
- def predict(
- self,
- input: str | list[str] | np.ndarray | list[np.ndarray],
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- use_textline_orientation: Optional[bool] = None,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- text_rec_score_thresh: Optional[float] = None,
- ) -> OCRResult:
- """
- Predict OCR results based on input images or arrays with optional preprocessing steps.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): Input image of pdf path(s) or numpy array(s).
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
- text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
- text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
- text_det_thresh (Optional[float]): Threshold for text detection.
- text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
- text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
- text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
- Returns:
- OCRResult: Generator yielding OCR results for each input image.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
- )
- if not self.check_model_settings_valid(model_settings):
- yield {"error": "the input params for model settings are invalid!"}
- text_det_params = self.get_text_det_params(
- text_det_limit_side_len,
- text_det_limit_type,
- text_det_thresh,
- text_det_box_thresh,
- text_det_unclip_ratio,
- )
- if text_rec_score_thresh is None:
- text_rec_score_thresh = self.text_rec_score_thresh
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- if not isinstance(batch_data[0], str):
- # TODO: add support input_pth for ndarray and pdf
- input_path = f"{img_id}"
- else:
- input_path = batch_data[0]
- image_array = self.img_reader(batch_data)[0]
- if model_settings["use_doc_preprocessor"]:
- doc_preprocessor_res = next(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )
- else:
- doc_preprocessor_res = {"output_img": image_array}
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- det_res = next(
- self.text_det_model(doc_preprocessor_image, **text_det_params)
- )
- dt_polys = det_res["dt_polys"]
- dt_scores = det_res["dt_scores"]
- dt_polys = self._sort_boxes(dt_polys)
- single_img_res = {
- "input_path": input_path,
- "doc_preprocessor_res": doc_preprocessor_res,
- "dt_polys": dt_polys,
- "model_settings": model_settings,
- "text_det_params": text_det_params,
- "text_type": self.text_type,
- "text_rec_score_thresh": text_rec_score_thresh,
- }
- single_img_res["rec_texts"] = []
- single_img_res["rec_scores"] = []
- single_img_res["rec_polys"] = []
- if len(dt_polys) > 0:
- all_subs_of_img = list(
- self._crop_by_polys(doc_preprocessor_image, dt_polys)
- )
- # use textline orientation model
- if model_settings["use_textline_orientation"]:
- angles = [
- textline_angle_info["class_ids"][0]
- for textline_angle_info in self.textline_orientation_model(
- all_subs_of_img
- )
- ]
- single_img_res["textline_orientation_angle"] = angles
- all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
- rno = -1
- for rec_res in self.text_rec_model(all_subs_of_img):
- rno += 1
- if rec_res["rec_score"] >= text_rec_score_thresh:
- single_img_res["rec_texts"].append(rec_res["rec_text"])
- single_img_res["rec_scores"].append(rec_res["rec_score"])
- single_img_res["rec_polys"].append(dt_polys[rno])
- rec_boxes = convert_points_to_boxes(single_img_res["rec_polys"])
- single_img_res["rec_boxes"] = rec_boxes
- yield OCRResult(single_img_res)
|