predictor.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Union, Dict, List, Tuple
  15. import numpy as np
  16. from ....utils.func_register import FuncRegister
  17. from ....modules.semantic_segmentation.model_list import MODELS
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ..common import (
  21. Resize,
  22. ResizeByShort,
  23. Normalize,
  24. ToCHWImage,
  25. ToBatch,
  26. StaticInfer,
  27. )
  28. from ..base import BasicPredictor
  29. from .result import SegResult
  30. class SegPredictor(BasicPredictor):
  31. """SegPredictor that inherits from BasicPredictor."""
  32. entities = MODELS
  33. _FUNC_MAP = {}
  34. register = FuncRegister(_FUNC_MAP)
  35. def __init__(self, *args: List, **kwargs: Dict) -> None:
  36. """Initializes SegPredictor.
  37. Args:
  38. *args: Arbitrary positional arguments passed to the superclass.
  39. **kwargs: Arbitrary keyword arguments passed to the superclass.
  40. """
  41. super().__init__(*args, **kwargs)
  42. self.preprocessors, self.infer = self._build()
  43. def _build_batch_sampler(self) -> ImageBatchSampler:
  44. """Builds and returns an ImageBatchSampler instance.
  45. Returns:
  46. ImageBatchSampler: An instance of ImageBatchSampler.
  47. """
  48. return ImageBatchSampler()
  49. def _get_result_class(self) -> type:
  50. """Returns the result class, SegResult.
  51. Returns:
  52. type: The SegResult class.
  53. """
  54. return SegResult
  55. def _build(self) -> Tuple:
  56. """Build the preprocessors, inference engine, and postprocessors based on the configuration.
  57. Returns:
  58. tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
  59. """
  60. preprocessors = {"Read": ReadImage(format="RGB")}
  61. preprocessors["ToCHW"] = ToCHWImage()
  62. for cfg in self.config["Deploy"]["transforms"]:
  63. tf_key = cfg.pop("type")
  64. func = self._FUNC_MAP[tf_key]
  65. args = cfg
  66. name, op = func(self, **args) if args else func(self)
  67. preprocessors[name] = op
  68. preprocessors["ToBatch"] = ToBatch()
  69. infer = StaticInfer(
  70. model_dir=self.model_dir,
  71. model_prefix=self.MODEL_FILE_PREFIX,
  72. option=self.pp_option,
  73. )
  74. return preprocessors, infer
  75. def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
  76. """
  77. Process a batch of data through the preprocessing, inference, and postprocessing.
  78. Args:
  79. batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
  80. Returns:
  81. dict: A dictionary containing the input path, raw image, and predicted segmentation maps for every instance of the batch. Keys include 'input_path', 'input_img', and 'pred'.
  82. """
  83. batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data)
  84. batch_imgs = self.preprocessors["ToCHW"](imgs=batch_raw_imgs)
  85. batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
  86. x = self.preprocessors["ToBatch"](imgs=batch_imgs)
  87. batch_preds = self.infer(x=x)
  88. if len(batch_data) > 1:
  89. batch_preds = np.split(batch_preds[0], len(batch_data), axis=0)
  90. return {
  91. "input_path": batch_data,
  92. "input_img": batch_raw_imgs,
  93. "pred": batch_preds,
  94. }
  95. @register("Normalize")
  96. def build_normalize(
  97. self,
  98. mean=0.5,
  99. std=0.5,
  100. ):
  101. op = Normalize(mean=mean, std=std)
  102. return "Normalize", op