| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .resnet import ResNet
- from .darknet import DarkNet
- from .detection import FasterRCNN
- from .mobilenet_v1 import MobileNetV1
- from .mobilenet_v2 import MobileNetV2
- from .mobilenet_v3 import MobileNetV3
- from .segmentation import UNet
- from .segmentation import DeepLabv3p
- from .xception import Xception
- from .densenet import DenseNet
- from .shufflenet_v2 import ShuffleNetV2
- from .hrnet import HRNet
- from .alexnet import AlexNet
- def resnet18(input, num_classes=1000):
- model = ResNet(layers=18, num_classes=num_classes)
- return model(input)
- def resnet34(input, num_classes=1000):
- model = ResNet(layers=34, num_classes=num_classes)
- return model(input)
- def resnet50(input, num_classes=1000):
- model = ResNet(layers=50, num_classes=num_classes)
- return model(input)
- def resnet101(input, num_classes=1000):
- model = ResNet(layers=101, num_classes=num_classes)
- return model(input)
- def resnet50_vd(input, num_classes=1000):
- model = ResNet(layers=50, num_classes=num_classes, variant='d')
- return model(input)
- def resnet50_vd_ssld(input, num_classes=1000):
- model = ResNet(
- layers=50,
- num_classes=num_classes,
- variant='d',
- lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
- return model(input)
- def resnet101_vd_ssld(input, num_classes=1000):
- model = ResNet(
- layers=101,
- num_classes=num_classes,
- variant='d',
- lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
- return model(input)
- def resnet101_vd(input, num_classes=1000):
- model = ResNet(layers=101, num_classes=num_classes, variant='d')
- return model(input)
- def darknet53(input, num_classes=1000):
- model = DarkNet(depth=53, num_classes=num_classes, bn_act='relu')
- return model(input)
- def mobilenetv1(input, num_classes=1000):
- model = MobileNetV1(num_classes=num_classes)
- return model(input)
- def mobilenetv2(input, num_classes=1000):
- model = MobileNetV2(num_classes=num_classes)
- return model(input)
- def mobilenetv3_small(input, num_classes=1000):
- model = MobileNetV3(num_classes=num_classes, model_name='small')
- return model(input)
- def mobilenetv3_large(input, num_classes=1000):
- model = MobileNetV3(num_classes=num_classes, model_name='large')
- return model(input)
- def mobilenetv3_small_ssld(input, num_classes=1000):
- model = MobileNetV3(
- num_classes=num_classes,
- model_name='small',
- lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
- return model(input)
- def mobilenetv3_large_ssld(input, num_classes=1000):
- model = MobileNetV3(
- num_classes=num_classes,
- model_name='large',
- lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
- return model(input)
- def xception65(input, num_classes=1000):
- model = Xception(layers=65, num_classes=num_classes)
- return model(input)
- def xception71(input, num_classes=1000):
- model = Xception(layers=71, num_classes=num_classes)
- return model(input)
- def xception41(input, num_classes=1000):
- model = Xception(layers=41, num_classes=num_classes)
- return model(input)
- def densenet121(input, num_classes=1000):
- model = DenseNet(layers=121, num_classes=num_classes)
- return model(input)
- def densenet161(input, num_classes=1000):
- model = DenseNet(layers=161, num_classes=num_classes)
- return model(input)
- def densenet201(input, num_classes=1000):
- model = DenseNet(layers=201, num_classes=num_classes)
- return model(input)
- def shufflenetv2(input, num_classes=1000):
- model = ShuffleNetV2(num_classes=num_classes)
- return model(input)
- def hrnet_w18(input, num_classes=1000):
- model = HRNet(width=18, num_classes=num_classes)
- return model(input)
- def alexnet(input, num_classes=1000):
- model = AlexNet(num_classes=num_classes)
- return model(input)
|