alexnet.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. #copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import math
  18. import paddle
  19. import paddle.fluid as fluid
  20. class AlexNet():
  21. def __init__(self, num_classes=1000):
  22. assert num_classes is not None, "In AlextNet, num_classes cannot be None"
  23. self.num_classes = num_classes
  24. def __call__(self, input):
  25. stdv = 1.0 / math.sqrt(input.shape[1] * 11 * 11)
  26. layer_name = [
  27. "conv1", "conv2", "conv3", "conv4", "conv5", "fc6", "fc7", "fc8"
  28. ]
  29. conv1 = fluid.layers.conv2d(
  30. input=input,
  31. num_filters=64,
  32. filter_size=11,
  33. stride=4,
  34. padding=2,
  35. groups=1,
  36. act='relu',
  37. bias_attr=fluid.param_attr.ParamAttr(
  38. initializer=fluid.initializer.Uniform(-stdv, stdv),
  39. name=layer_name[0] + "_offset"),
  40. param_attr=fluid.param_attr.ParamAttr(
  41. initializer=fluid.initializer.Uniform(-stdv, stdv),
  42. name=layer_name[0] + "_weights"))
  43. pool1 = fluid.layers.pool2d(
  44. input=conv1,
  45. pool_size=3,
  46. pool_stride=2,
  47. pool_padding=0,
  48. pool_type='max')
  49. stdv = 1.0 / math.sqrt(pool1.shape[1] * 5 * 5)
  50. conv2 = fluid.layers.conv2d(
  51. input=pool1,
  52. num_filters=192,
  53. filter_size=5,
  54. stride=1,
  55. padding=2,
  56. groups=1,
  57. act='relu',
  58. bias_attr=fluid.param_attr.ParamAttr(
  59. initializer=fluid.initializer.Uniform(-stdv, stdv),
  60. name=layer_name[1] + "_offset"),
  61. param_attr=fluid.param_attr.ParamAttr(
  62. initializer=fluid.initializer.Uniform(-stdv, stdv),
  63. name=layer_name[1] + "_weights"))
  64. pool2 = fluid.layers.pool2d(
  65. input=conv2,
  66. pool_size=3,
  67. pool_stride=2,
  68. pool_padding=0,
  69. pool_type='max')
  70. stdv = 1.0 / math.sqrt(pool2.shape[1] * 3 * 3)
  71. conv3 = fluid.layers.conv2d(
  72. input=pool2,
  73. num_filters=384,
  74. filter_size=3,
  75. stride=1,
  76. padding=1,
  77. groups=1,
  78. act='relu',
  79. bias_attr=fluid.param_attr.ParamAttr(
  80. initializer=fluid.initializer.Uniform(-stdv, stdv),
  81. name=layer_name[2] + "_offset"),
  82. param_attr=fluid.param_attr.ParamAttr(
  83. initializer=fluid.initializer.Uniform(-stdv, stdv),
  84. name=layer_name[2] + "_weights"))
  85. stdv = 1.0 / math.sqrt(conv3.shape[1] * 3 * 3)
  86. conv4 = fluid.layers.conv2d(
  87. input=conv3,
  88. num_filters=256,
  89. filter_size=3,
  90. stride=1,
  91. padding=1,
  92. groups=1,
  93. act='relu',
  94. bias_attr=fluid.param_attr.ParamAttr(
  95. initializer=fluid.initializer.Uniform(-stdv, stdv),
  96. name=layer_name[3] + "_offset"),
  97. param_attr=fluid.param_attr.ParamAttr(
  98. initializer=fluid.initializer.Uniform(-stdv, stdv),
  99. name=layer_name[3] + "_weights"))
  100. stdv = 1.0 / math.sqrt(conv4.shape[1] * 3 * 3)
  101. conv5 = fluid.layers.conv2d(
  102. input=conv4,
  103. num_filters=256,
  104. filter_size=3,
  105. stride=1,
  106. padding=1,
  107. groups=1,
  108. act='relu',
  109. bias_attr=fluid.param_attr.ParamAttr(
  110. initializer=fluid.initializer.Uniform(-stdv, stdv),
  111. name=layer_name[4] + "_offset"),
  112. param_attr=fluid.param_attr.ParamAttr(
  113. initializer=fluid.initializer.Uniform(-stdv, stdv),
  114. name=layer_name[4] + "_weights"))
  115. pool5 = fluid.layers.pool2d(
  116. input=conv5,
  117. pool_size=3,
  118. pool_stride=2,
  119. pool_padding=0,
  120. pool_type='max')
  121. drop6 = fluid.layers.dropout(x=pool5, dropout_prob=0.5)
  122. stdv = 1.0 / math.sqrt(drop6.shape[1] * drop6.shape[2] *
  123. drop6.shape[3] * 1.0)
  124. fc6 = fluid.layers.fc(
  125. input=drop6,
  126. size=4096,
  127. act='relu',
  128. bias_attr=fluid.param_attr.ParamAttr(
  129. initializer=fluid.initializer.Uniform(-stdv, stdv),
  130. name=layer_name[5] + "_offset"),
  131. param_attr=fluid.param_attr.ParamAttr(
  132. initializer=fluid.initializer.Uniform(-stdv, stdv),
  133. name=layer_name[5] + "_weights"))
  134. drop7 = fluid.layers.dropout(x=fc6, dropout_prob=0.5)
  135. stdv = 1.0 / math.sqrt(drop7.shape[1] * 1.0)
  136. fc7 = fluid.layers.fc(
  137. input=drop7,
  138. size=4096,
  139. act='relu',
  140. bias_attr=fluid.param_attr.ParamAttr(
  141. initializer=fluid.initializer.Uniform(-stdv, stdv),
  142. name=layer_name[6] + "_offset"),
  143. param_attr=fluid.param_attr.ParamAttr(
  144. initializer=fluid.initializer.Uniform(-stdv, stdv),
  145. name=layer_name[6] + "_weights"))
  146. stdv = 1.0 / math.sqrt(fc7.shape[1] * 1.0)
  147. out = fluid.layers.fc(
  148. input=fc7,
  149. size=self.num_classes,
  150. bias_attr=fluid.param_attr.ParamAttr(
  151. initializer=fluid.initializer.Uniform(-stdv, stdv),
  152. name=layer_name[7] + "_offset"),
  153. param_attr=fluid.param_attr.ParamAttr(
  154. initializer=fluid.initializer.Uniform(-stdv, stdv),
  155. name=layer_name[7] + "_weights"))
  156. return out