| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- #copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- import paddle.fluid as fluid
- class AlexNet():
- def __init__(self, num_classes=1000):
- assert num_classes is not None, "In AlextNet, num_classes cannot be None"
- self.num_classes = num_classes
- def __call__(self, input):
- stdv = 1.0 / math.sqrt(input.shape[1] * 11 * 11)
- layer_name = [
- "conv1", "conv2", "conv3", "conv4", "conv5", "fc6", "fc7", "fc8"
- ]
- conv1 = fluid.layers.conv2d(
- input=input,
- num_filters=64,
- filter_size=11,
- stride=4,
- padding=2,
- groups=1,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[0] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[0] + "_weights"))
- pool1 = fluid.layers.pool2d(
- input=conv1,
- pool_size=3,
- pool_stride=2,
- pool_padding=0,
- pool_type='max')
- stdv = 1.0 / math.sqrt(pool1.shape[1] * 5 * 5)
- conv2 = fluid.layers.conv2d(
- input=pool1,
- num_filters=192,
- filter_size=5,
- stride=1,
- padding=2,
- groups=1,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[1] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[1] + "_weights"))
- pool2 = fluid.layers.pool2d(
- input=conv2,
- pool_size=3,
- pool_stride=2,
- pool_padding=0,
- pool_type='max')
- stdv = 1.0 / math.sqrt(pool2.shape[1] * 3 * 3)
- conv3 = fluid.layers.conv2d(
- input=pool2,
- num_filters=384,
- filter_size=3,
- stride=1,
- padding=1,
- groups=1,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[2] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[2] + "_weights"))
- stdv = 1.0 / math.sqrt(conv3.shape[1] * 3 * 3)
- conv4 = fluid.layers.conv2d(
- input=conv3,
- num_filters=256,
- filter_size=3,
- stride=1,
- padding=1,
- groups=1,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[3] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[3] + "_weights"))
- stdv = 1.0 / math.sqrt(conv4.shape[1] * 3 * 3)
- conv5 = fluid.layers.conv2d(
- input=conv4,
- num_filters=256,
- filter_size=3,
- stride=1,
- padding=1,
- groups=1,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[4] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[4] + "_weights"))
- pool5 = fluid.layers.pool2d(
- input=conv5,
- pool_size=3,
- pool_stride=2,
- pool_padding=0,
- pool_type='max')
- drop6 = fluid.layers.dropout(x=pool5, dropout_prob=0.5)
- stdv = 1.0 / math.sqrt(drop6.shape[1] * drop6.shape[2] *
- drop6.shape[3] * 1.0)
- fc6 = fluid.layers.fc(
- input=drop6,
- size=4096,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[5] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[5] + "_weights"))
- drop7 = fluid.layers.dropout(x=fc6, dropout_prob=0.5)
- stdv = 1.0 / math.sqrt(drop7.shape[1] * 1.0)
- fc7 = fluid.layers.fc(
- input=drop7,
- size=4096,
- act='relu',
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[6] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[6] + "_weights"))
- stdv = 1.0 / math.sqrt(fc7.shape[1] * 1.0)
- out = fluid.layers.fc(
- input=fc7,
- size=self.num_classes,
- bias_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[7] + "_offset"),
- param_attr=fluid.param_attr.ParamAttr(
- initializer=fluid.initializer.Uniform(-stdv, stdv),
- name=layer_name[7] + "_weights"))
- return out
|