| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ..components import CropByBoxes
- from ..results import FormulaRecResult
- from .base import BasePipeline
- from ...utils import logging
- class FormulaRecognitionPipeline(BasePipeline):
- """Formula Recognition Pipeline"""
- entities = "formula_recognition"
- def __init__(
- self,
- layout_model,
- formula_rec_model,
- layout_batch_size=1,
- formula_rec_batch_size=1,
- device=None,
- predictor_kwargs=None,
- ):
- super().__init__(device, predictor_kwargs)
- self._build_predictor(layout_model, formula_rec_model)
- self.set_predictor(
- layout_batch_size=layout_batch_size,
- formula_rec_batch_size=formula_rec_batch_size,
- )
- def _build_predictor(self, layout_model, formula_rec_model):
- self.layout_predictor = self._create(model=layout_model)
- self.formula_predictor = self._create(model=formula_rec_model)
- self._crop_by_boxes = CropByBoxes()
- def set_predictor(
- self, layout_batch_size=None, formula_rec_batch_size=None, device=None
- ):
- if layout_batch_size:
- self.layout_predictor.set_predictor(batch_size=layout_batch_size)
- if formula_rec_batch_size:
- self.formula_predictor.set_predictor(batch_size=formula_rec_batch_size)
- if device:
- self.layout_predictor.set_predictor(device=device)
- self.formula_predictor.set_predictor(device=device)
- def predict(self, x, **kwargs):
- self.set_predictor(**kwargs)
- for layout_pred in self.layout_predictor(x):
- single_img_res = {
- "input_path": "",
- "layout_result": {},
- "ocr_result": {},
- "table_result": [],
- }
- # update layout result
- single_img_res["input_path"] = layout_pred["input_path"]
- single_img_res["layout_result"] = layout_pred
- single_img_res["dt_polys"] = []
- single_img_res["rec_formula"] = []
- all_subs_of_formula_img = []
- layout_pred["boxes"] = sorted(
- layout_pred["boxes"], key=lambda x: self.sorted_formula_box(x)
- )
- if len(layout_pred["boxes"]) > 0:
- subs_of_img = list(self._crop_by_boxes(layout_pred))
- # get cropped images with label "formula"
- for sub in subs_of_img:
- if sub["label"].lower() == "formula":
- boxes = sub["box"]
- x1, y1, x2, y2 = list(boxes)
- poly = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]])
- all_subs_of_formula_img.append(sub["img"])
- single_img_res["dt_polys"].append(poly)
- if len(all_subs_of_formula_img) > 0:
- for formula_res in self.formula_predictor(all_subs_of_formula_img):
- single_img_res["rec_formula"].append(
- str(formula_res["rec_text"])
- )
- yield FormulaRecResult(single_img_res)
- def sorted_formula_box(self, x):
- coordinate = x["coordinate"]
- x1, y1, x2, y2 = list(coordinate)
- return (y1 + y2) / 2
|