| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ..components import SortBoxes, CropByPolys
- from ..results import OCRResult
- from .base import BasePipeline
- from ...utils import logging
- class OCRPipeline(BasePipeline):
- """OCR Pipeline"""
- entities = "OCR"
- def __init__(
- self,
- text_det_model,
- text_rec_model,
- text_det_batch_size=1,
- text_rec_batch_size=1,
- device=None,
- predictor_kwargs=None,
- ):
- super().__init__(device, predictor_kwargs)
- self._build_predictor(text_det_model, text_rec_model)
- self.set_predictor(
- text_det_batch_size=text_det_batch_size,
- text_rec_batch_size=text_rec_batch_size,
- )
- def _build_predictor(self, text_det_model, text_rec_model):
- self.text_det_model = self._create(model=text_det_model)
- self.text_rec_model = self._create(model=text_rec_model)
- self.is_curve = self.text_det_model.model_name in [
- "PP-OCRv4_mobile_seal_det",
- "PP-OCRv4_server_seal_det",
- ]
- self._sort_boxes = SortBoxes()
- self._crop_by_polys = CropByPolys(
- det_box_type="poly" if self.is_curve else "quad"
- )
- def set_predictor(
- self, text_det_batch_size=None, text_rec_batch_size=None, device=None
- ):
- if text_det_batch_size and text_det_batch_size > 1:
- logging.warning(
- f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! "
- )
- if text_rec_batch_size:
- self.text_rec_model.set_predictor(batch_size=text_rec_batch_size)
- if device:
- self.text_rec_model.set_predictor(device=device)
- self.text_det_model.set_predictor(device=device)
- def predict(self, input, **kwargs):
- self.set_predictor(**kwargs)
- for det_res in self.text_det_model(input):
- single_img_res = (
- det_res if self.is_curve else next(self._sort_boxes(det_res))
- )
- single_img_res["rec_text"] = []
- single_img_res["rec_score"] = []
- if len(single_img_res["dt_polys"]) > 0:
- all_subs_of_img = list(self._crop_by_polys(single_img_res))
- for rec_res in self.text_rec_model(all_subs_of_img):
- single_img_res["rec_text"].append(rec_res["rec_text"])
- single_img_res["rec_score"].append(rec_res["rec_score"])
- yield OCRResult(single_img_res)
|