| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import copy
- import os.path as osp
- import six
- import sys
- import random
- import numpy as np
- import paddlex.utils.logging as logging
- import paddlex as pst
- from .voc import VOCDetection
- from .dataset import is_pic
- class CocoDetection(VOCDetection):
- """读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。
- Args:
- data_dir (str): 数据集所在的目录路径。
- ann_file (str): 数据集的标注文件,为一个独立的json格式文件。
- transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
- buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
- parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
- 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- """
- def __init__(self,
- data_dir,
- ann_file,
- transforms=None,
- num_workers='auto',
- buffer_size=100,
- parallel_method='process',
- shuffle=False):
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- try:
- import shapely.ops
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
- except:
- six.reraise(*sys.exc_info())
- super(VOCDetection, self).__init__(
- transforms=transforms,
- num_workers=num_workers,
- buffer_size=buffer_size,
- parallel_method=parallel_method,
- shuffle=shuffle)
- self.file_list = list()
- self.labels = list()
- self._epoch = 0
- coco = COCO(ann_file)
- self.coco_gt = coco
- img_ids = coco.getImgIds()
- cat_ids = coco.getCatIds()
- catid2clsid = dict({catid: i + 1 for i, catid in enumerate(cat_ids)})
- cname2cid = dict({
- coco.loadCats(catid)[0]['name']: clsid
- for catid, clsid in catid2clsid.items()
- })
- for label, cid in sorted(cname2cid.items(), key=lambda d: d[1]):
- self.labels.append(label)
- logging.info("Starting to read file list from dataset...")
- for img_id in img_ids:
- img_anno = coco.loadImgs(img_id)[0]
- im_fname = osp.join(data_dir, img_anno['file_name'])
- if not is_pic(im_fname):
- continue
- im_w = float(img_anno['width'])
- im_h = float(img_anno['height'])
- ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
- instances = coco.loadAnns(ins_anno_ids)
- bboxes = []
- for inst in instances:
- x, y, box_w, box_h = inst['bbox']
- x1 = max(0, x)
- y1 = max(0, y)
- x2 = min(im_w - 1, x1 + max(0, box_w - 1))
- y2 = min(im_h - 1, y1 + max(0, box_h - 1))
- if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
- inst['clean_bbox'] = [x1, y1, x2, y2]
- bboxes.append(inst)
- else:
- logging.warning(
- "Found an invalid bbox in annotations: im_id: {}, area: {} x1: {}, y1: {}, x2: {}, y2: {}."
- .format(img_id, float(inst['area']), x1, y1, x2, y2))
- num_bbox = len(bboxes)
- gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
- gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_score = np.ones((num_bbox, 1), dtype=np.float32)
- is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
- difficult = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_poly = [None] * num_bbox
- for i, box in enumerate(bboxes):
- catid = box['category_id']
- gt_class[i][0] = catid2clsid[catid]
- gt_bbox[i, :] = box['clean_bbox']
- is_crowd[i][0] = box['iscrowd']
- if 'segmentation' in box:
- gt_poly[i] = box['segmentation']
- im_info = {
- 'im_id': np.array([img_id]).astype('int32'),
- 'image_shape': np.array([im_h, im_w]).astype('int32'),
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'gt_poly': gt_poly,
- 'difficult': difficult
- }
- if None in gt_poly:
- del label_info['gt_poly']
- coco_rec = (im_info, label_info)
- self.file_list.append([im_fname, coco_rec])
- if not len(self.file_list) > 0:
- raise Exception('not found any coco record in %s' % (ann_file))
- logging.info("{} samples in file {}".format(
- len(self.file_list), ann_file))
- self.num_samples = len(self.file_list)
|