| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import os.path as osp
- import random
- import copy
- import json
- import cv2
- import numpy as np
- import paddlex.utils.logging as logging
- from paddlex.utils import path_normalization
- from .voc import VOCDetection
- from .dataset import is_pic
- from .dataset import get_encoding
- class EasyDataDet(VOCDetection):
- """读取EasyDataDet格式的检测数据集,并对样本进行相应的处理。
- Args:
- data_dir (str): 数据集所在的目录路径。
- file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
- label_list (str): 描述数据集包含的类别信息文件路径。
- transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
- 一半。
- buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
- parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
- 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- """
- def __init__(self,
- data_dir,
- file_list,
- label_list,
- transforms=None,
- num_workers='auto',
- buffer_size=100,
- parallel_method='process',
- shuffle=False):
- super(VOCDetection, self).__init__(
- transforms=transforms,
- num_workers=num_workers,
- buffer_size=buffer_size,
- parallel_method=parallel_method,
- shuffle=shuffle)
- self.file_list = list()
- self.labels = list()
- self._epoch = 0
- annotations = {}
- annotations['images'] = []
- annotations['categories'] = []
- annotations['annotations'] = []
- cname2cid = {}
- label_id = 1
- with open(label_list, encoding=get_encoding(label_list)) as fr:
- for line in fr.readlines():
- cname2cid[line.strip()] = label_id
- label_id += 1
- self.labels.append(line.strip())
- logging.info("Starting to read file list from dataset...")
- for k, v in cname2cid.items():
- annotations['categories'].append({
- 'supercategory': 'component',
- 'id': v,
- 'name': k
- })
- from pycocotools.mask import decode
- ct = 0
- ann_ct = 0
- with open(file_list, encoding=get_encoding(file_list)) as f:
- for line in f:
- img_file, json_file = [osp.join(data_dir, x) \
- for x in line.strip().split()[:2]]
- img_file = path_normalization(img_file)
- json_file = path_normalization(json_file)
- if not is_pic(img_file):
- continue
- if not osp.isfile(json_file):
- continue
- if not osp.exists(img_file):
- raise IOError('The image file {} is not exist!'.format(
- img_file))
- with open(json_file, mode='r', \
- encoding=get_encoding(json_file)) as j:
- json_info = json.load(j)
- im_id = np.array([ct])
- im = cv2.imread(img_file)
- im_w = im.shape[1]
- im_h = im.shape[0]
- objs = json_info['labels']
- gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
- gt_class = np.zeros((len(objs), 1), dtype=np.int32)
- gt_score = np.ones((len(objs), 1), dtype=np.float32)
- is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
- difficult = np.zeros((len(objs), 1), dtype=np.int32)
- gt_poly = [None] * len(objs)
- for i, obj in enumerate(objs):
- cname = obj['name']
- gt_class[i][0] = cname2cid[cname]
- x1 = max(0, obj['x1'])
- y1 = max(0, obj['y1'])
- x2 = min(im_w - 1, obj['x2'])
- y2 = min(im_h - 1, obj['y2'])
- gt_bbox[i] = [x1, y1, x2, y2]
- is_crowd[i][0] = 0
- if 'mask' in obj:
- mask_dict = {}
- mask_dict['size'] = [im_h, im_w]
- mask_dict['counts'] = obj['mask'].encode()
- mask = decode(mask_dict)
- gt_poly[i] = self.mask2polygon(mask)
- annotations['annotations'].append({
- 'iscrowd': 0,
- 'image_id': int(im_id[0]),
- 'bbox': [x1, y1, x2 - x1 + 1, y2 - y1 + 1],
- 'area': float((x2 - x1 + 1) * (y2 - y1 + 1)),
- 'segmentation': [[x1, y1, x1, y2, x2, y2, x2, y1]]
- if gt_poly[i] is None else gt_poly[i],
- 'category_id': cname2cid[cname],
- 'id': ann_ct,
- 'difficult': 0
- })
- ann_ct += 1
- im_info = {
- 'im_id': im_id,
- 'image_shape': np.array([im_h, im_w]).astype('int32'),
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'difficult': difficult
- }
- if None not in gt_poly:
- label_info['gt_poly'] = gt_poly
- voc_rec = (im_info, label_info)
- if len(objs) != 0:
- self.file_list.append([img_file, voc_rec])
- ct += 1
- annotations['images'].append({
- 'height': im_h,
- 'width': im_w,
- 'id': int(im_id[0]),
- 'file_name': osp.split(img_file)[1]
- })
- if not len(self.file_list) > 0:
- raise Exception('not found any voc record in %s' % (file_list))
- logging.info("{} samples in file {}".format(
- len(self.file_list), file_list))
- self.num_samples = len(self.file_list)
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- self.coco_gt = COCO()
- self.coco_gt.dataset = annotations
- self.coco_gt.createIndex()
- def mask2polygon(self, mask):
- contours, hierarchy = cv2.findContours(
- (mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- segmentation = []
- for contour in contours:
- contour_list = contour.flatten().tolist()
- if len(contour_list) > 4:
- segmentation.append(contour_list)
- return segmentation
|