pipeline.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional
  15. import numpy as np
  16. from scipy.ndimage import rotate
  17. from ...common.reader import ReadImage
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from ..base import BasePipeline
  21. from ..components import (
  22. CropByPolys,
  23. SortQuadBoxes,
  24. SortPolyBoxes,
  25. convert_points_to_boxes,
  26. )
  27. from .result import OCRResult
  28. from ..doc_preprocessor.result import DocPreprocessorResult
  29. from ....utils import logging
  30. class OCRPipeline(BasePipeline):
  31. """OCR Pipeline"""
  32. entities = "OCR"
  33. def __init__(
  34. self,
  35. config: Dict,
  36. device: Optional[str] = None,
  37. pp_option: Optional[PaddlePredictorOption] = None,
  38. use_hpip: bool = False,
  39. ) -> None:
  40. """
  41. Initializes the class with given configurations and options.
  42. Args:
  43. config (Dict): Configuration dictionary containing various settings.
  44. device (str, optional): Device to run the predictions on. Defaults to None.
  45. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  46. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  47. """
  48. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  49. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  50. if self.use_doc_preprocessor:
  51. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  52. "DocPreprocessor",
  53. {
  54. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  55. },
  56. )
  57. self.doc_preprocessor_pipeline = self.create_pipeline(
  58. doc_preprocessor_config
  59. )
  60. self.use_textline_orientation = config.get("use_textline_orientation", True)
  61. if self.use_textline_orientation:
  62. textline_orientation_config = config.get("SubModules", {}).get(
  63. "TextLineOrientation",
  64. {"model_config_error": "config error for textline_orientation_model!"},
  65. )
  66. # TODO: add batch_size
  67. # batch_size = textline_orientation_config.get("batch_size", 1)
  68. # self.textline_orientation_model = self.create_model(
  69. # textline_orientation_config, batch_size=batch_size
  70. # )
  71. self.textline_orientation_model = self.create_model(
  72. textline_orientation_config
  73. )
  74. text_det_config = config.get("SubModules", {}).get(
  75. "TextDetection", {"model_config_error": "config error for text_det_model!"}
  76. )
  77. self.text_type = config["text_type"]
  78. if self.text_type == "general":
  79. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
  80. self.text_det_limit_type = text_det_config.get("limit_type", "max")
  81. self.text_det_thresh = text_det_config.get("thresh", 0.3)
  82. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  83. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
  84. self._sort_boxes = SortQuadBoxes()
  85. self._crop_by_polys = CropByPolys(det_box_type="quad")
  86. elif self.text_type == "seal":
  87. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
  88. self.text_det_limit_type = text_det_config.get("limit_type", "min")
  89. self.text_det_thresh = text_det_config.get("thresh", 0.2)
  90. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  91. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
  92. self._sort_boxes = SortPolyBoxes()
  93. self._crop_by_polys = CropByPolys(det_box_type="poly")
  94. else:
  95. raise ValueError("Unsupported text type {}".format(self.text_type))
  96. self.text_det_model = self.create_model(
  97. text_det_config,
  98. limit_side_len=self.text_det_limit_side_len,
  99. limit_type=self.text_det_limit_type,
  100. thresh=self.text_det_thresh,
  101. box_thresh=self.text_det_box_thresh,
  102. unclip_ratio=self.text_det_unclip_ratio,
  103. )
  104. text_rec_config = config.get("SubModules", {}).get(
  105. "TextRecognition",
  106. {"model_config_error": "config error for text_rec_model!"},
  107. )
  108. # TODO: add batch_size
  109. # batch_size = text_rec_config.get("batch_size", 1)
  110. # self.text_rec_model = self.create_model(text_rec_config,
  111. # batch_size=batch_size)
  112. self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
  113. self.text_rec_model = self.create_model(text_rec_config)
  114. self.batch_sampler = ImageBatchSampler(batch_size=1)
  115. self.img_reader = ReadImage(format="BGR")
  116. def rotate_image(
  117. self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
  118. ) -> List[np.ndarray]:
  119. """
  120. Rotate the given image arrays by their corresponding angles.
  121. 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
  122. Args:
  123. image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
  124. rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
  125. 0 means rotate by 0 degrees
  126. 1 means rotate by 180 degrees
  127. Returns:
  128. List[np.ndarray]: A list of rotated image arrays.
  129. Raises:
  130. AssertionError: If any rotate_angle is not 0 or 1.
  131. AssertionError: If the lengths of input lists don't match.
  132. """
  133. assert len(image_array_list) == len(
  134. rotate_angle_list
  135. ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
  136. for angle in rotate_angle_list:
  137. assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
  138. rotated_images = []
  139. for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
  140. # Convert 0/1 indicator to actual rotation angle
  141. rotate_angle = rotate_indicator * 180
  142. rotated_image = rotate(image_array, rotate_angle, reshape=True)
  143. rotated_images.append(rotated_image)
  144. return rotated_images
  145. def check_model_settings_valid(self, model_settings: Dict) -> bool:
  146. """
  147. Check if the input parameters are valid based on the initialized models.
  148. Args:
  149. model_info_params(Dict): A dictionary containing input parameters.
  150. Returns:
  151. bool: True if all required models are initialized according to input parameters, False otherwise.
  152. """
  153. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  154. logging.error(
  155. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  156. )
  157. return False
  158. if (
  159. model_settings["use_textline_orientation"]
  160. and not self.use_textline_orientation
  161. ):
  162. logging.error(
  163. "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
  164. )
  165. return False
  166. return True
  167. def get_model_settings(
  168. self,
  169. use_doc_orientation_classify: Optional[bool],
  170. use_doc_unwarping: Optional[bool],
  171. use_textline_orientation: Optional[bool],
  172. ) -> dict:
  173. """
  174. Get the model settings based on the provided parameters or default values.
  175. Args:
  176. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  177. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  178. use_textline_orientation (Optional[bool]): Whether to use textline orientation.
  179. Returns:
  180. dict: A dictionary containing the model settings.
  181. """
  182. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  183. use_doc_preprocessor = self.use_doc_preprocessor
  184. else:
  185. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  186. use_doc_preprocessor = True
  187. else:
  188. use_doc_preprocessor = False
  189. if use_textline_orientation is None:
  190. use_textline_orientation = self.use_textline_orientation
  191. return dict(
  192. use_doc_preprocessor=use_doc_preprocessor,
  193. use_textline_orientation=use_textline_orientation,
  194. )
  195. def get_text_det_params(
  196. self,
  197. text_det_limit_side_len: Optional[int] = None,
  198. text_det_limit_type: Optional[str] = None,
  199. text_det_thresh: Optional[float] = None,
  200. text_det_box_thresh: Optional[float] = None,
  201. text_det_unclip_ratio: Optional[float] = None,
  202. ) -> dict:
  203. """
  204. Get text detection parameters.
  205. If a parameter is None, its default value from the instance will be used.
  206. Args:
  207. text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
  208. text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
  209. text_det_thresh (Optional[float]): The threshold for text detection.
  210. text_det_box_thresh (Optional[float]): The threshold for the bounding box.
  211. text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
  212. Returns:
  213. dict: A dictionary containing the text detection parameters.
  214. """
  215. if text_det_limit_side_len is None:
  216. text_det_limit_side_len = self.text_det_limit_side_len
  217. if text_det_limit_type is None:
  218. text_det_limit_type = self.text_det_limit_type
  219. if text_det_thresh is None:
  220. text_det_thresh = self.text_det_thresh
  221. if text_det_box_thresh is None:
  222. text_det_box_thresh = self.text_det_box_thresh
  223. if text_det_unclip_ratio is None:
  224. text_det_unclip_ratio = self.text_det_unclip_ratio
  225. return dict(
  226. limit_side_len=text_det_limit_side_len,
  227. limit_type=text_det_limit_type,
  228. thresh=text_det_thresh,
  229. box_thresh=text_det_box_thresh,
  230. unclip_ratio=text_det_unclip_ratio,
  231. )
  232. def predict(
  233. self,
  234. input: str | list[str] | np.ndarray | list[np.ndarray],
  235. use_doc_orientation_classify: Optional[bool] = None,
  236. use_doc_unwarping: Optional[bool] = None,
  237. use_textline_orientation: Optional[bool] = None,
  238. text_det_limit_side_len: Optional[int] = None,
  239. text_det_limit_type: Optional[str] = None,
  240. text_det_thresh: Optional[float] = None,
  241. text_det_box_thresh: Optional[float] = None,
  242. text_det_unclip_ratio: Optional[float] = None,
  243. text_rec_score_thresh: Optional[float] = None,
  244. ) -> OCRResult:
  245. """
  246. Predict OCR results based on input images or arrays with optional preprocessing steps.
  247. Args:
  248. input (str | list[str] | np.ndarray | list[np.ndarray]): Input image of pdf path(s) or numpy array(s).
  249. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  250. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  251. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  252. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  253. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  254. text_det_thresh (Optional[float]): Threshold for text detection.
  255. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  256. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  257. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  258. Returns:
  259. OCRResult: Generator yielding OCR results for each input image.
  260. """
  261. model_settings = self.get_model_settings(
  262. use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
  263. )
  264. if not self.check_model_settings_valid(model_settings):
  265. yield {"error": "the input params for model settings are invalid!"}
  266. text_det_params = self.get_text_det_params(
  267. text_det_limit_side_len,
  268. text_det_limit_type,
  269. text_det_thresh,
  270. text_det_box_thresh,
  271. text_det_unclip_ratio,
  272. )
  273. if text_rec_score_thresh is None:
  274. text_rec_score_thresh = self.text_rec_score_thresh
  275. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  276. if not isinstance(batch_data[0], str):
  277. # TODO: add support input_pth for ndarray and pdf
  278. input_path = f"{img_id}.jpg"
  279. else:
  280. input_path = batch_data[0]
  281. image_array = self.img_reader(batch_data)[0]
  282. if model_settings["use_doc_preprocessor"]:
  283. doc_preprocessor_res = next(
  284. self.doc_preprocessor_pipeline(
  285. image_array,
  286. use_doc_orientation_classify=use_doc_orientation_classify,
  287. use_doc_unwarping=use_doc_unwarping,
  288. )
  289. )
  290. else:
  291. doc_preprocessor_res = {"output_img": image_array}
  292. doc_preprocessor_image = doc_preprocessor_res["output_img"]
  293. det_res = next(
  294. self.text_det_model(doc_preprocessor_image, **text_det_params)
  295. )
  296. dt_polys = det_res["dt_polys"]
  297. dt_scores = det_res["dt_scores"]
  298. dt_polys = self._sort_boxes(dt_polys)
  299. single_img_res = {
  300. "input_path": input_path,
  301. "doc_preprocessor_res": doc_preprocessor_res,
  302. "dt_polys": dt_polys,
  303. "model_settings": model_settings,
  304. "text_det_params": text_det_params,
  305. "text_type": self.text_type,
  306. "text_rec_score_thresh": text_rec_score_thresh,
  307. }
  308. single_img_res["rec_texts"] = []
  309. single_img_res["rec_scores"] = []
  310. single_img_res["rec_polys"] = []
  311. if len(dt_polys) > 0:
  312. all_subs_of_img = list(
  313. self._crop_by_polys(doc_preprocessor_image, dt_polys)
  314. )
  315. # use textline orientation model
  316. if model_settings["use_textline_orientation"]:
  317. angles = [
  318. textline_angle_info["class_ids"][0]
  319. for textline_angle_info in self.textline_orientation_model(
  320. all_subs_of_img
  321. )
  322. ]
  323. all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
  324. else:
  325. angles = [-1] * len(all_subs_of_img)
  326. single_img_res["textline_orientation_angles"] = angles
  327. sub_img_info_list = [
  328. {
  329. "sub_img_id": img_id,
  330. "sub_img_ratio": sub_img.shape[1] / float(sub_img.shape[0]),
  331. }
  332. for img_id, sub_img in enumerate(all_subs_of_img)
  333. ]
  334. sorted_subs_info = sorted(
  335. sub_img_info_list, key=lambda x: x["sub_img_ratio"]
  336. )
  337. sorted_subs_of_img = [
  338. all_subs_of_img[x["sub_img_id"]] for x in sorted_subs_info
  339. ]
  340. for idx, rec_res in enumerate(self.text_rec_model(sorted_subs_of_img)):
  341. sub_img_id = sorted_subs_info[idx]["sub_img_id"]
  342. sub_img_info_list[sub_img_id]["rec_res"] = rec_res
  343. for sno in range(len(sub_img_info_list)):
  344. rec_res = sub_img_info_list[sno]["rec_res"]
  345. if rec_res["rec_score"] >= text_rec_score_thresh:
  346. single_img_res["rec_texts"].append(rec_res["rec_text"])
  347. single_img_res["rec_scores"].append(rec_res["rec_score"])
  348. single_img_res["rec_polys"].append(dt_polys[sno])
  349. if self.text_type == "general":
  350. rec_boxes = convert_points_to_boxes(single_img_res["rec_polys"])
  351. single_img_res["rec_boxes"] = rec_boxes
  352. else:
  353. single_img_res["rec_boxes"] = np.array([])
  354. yield OCRResult(single_img_res)