| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217 |
- using System;
- using System.IO;
- using System.Collections.Generic;
- using System.ComponentModel;
- using System.Data;
- using System.Drawing;
- using System.Linq;
- using System.Text;
- using System.Threading;
- using System.Threading.Tasks;
- using System.Windows.Forms;
- using System.Runtime.InteropServices;
- using System.Drawing.Imaging;
- using OpenCvSharp;
- namespace WinFormsApp_final
- {
- public partial class Form1 : Form
- {
- /**********************************************************************/
- /***************** 1.推理DLL导入实现 ****************/
- /**********************************************************************/
- // 加载推理相关方法
- [DllImport("model_infer.dll", EntryPoint = "InitModel")] // 模型统一初始化方法: 需要yml、pdmodel、pdiparams
- public static extern void InitModel(string model_type, string model_filename, string params_filename, string cfg_file, bool use_gpu, int gpu_id, ref byte paddlex_model_type);
- [DllImport("model_infer.dll", EntryPoint = "Det_ModelPredict")] // PaddleDetection模型推理方法
- public static extern void Det_ModelPredict(byte[] img, int W, int H, int C, IntPtr output, int[] BoxesNum, ref byte label);
- [DllImport("model_infer.dll", EntryPoint = "Seg_ModelPredict")] // PaddleSeg模型推理方法
- public static extern void Seg_ModelPredict(byte[] img, int W, int H, int C, ref byte output);
- [DllImport("model_infer.dll", EntryPoint = "Cls_ModelPredict")] // PaddleClas模型推理方法
- public static extern void Cls_ModelPredict(byte[] img, int W, int H, int C, ref float score, ref byte category, ref int category_id);
- [DllImport("model_infer.dll", EntryPoint = "Mask_ModelPredict")] // Paddlex的MaskRCNN模型推理方法
- public static extern void Mask_ModelPredict(byte[] img, int W, int H, int C, IntPtr output, ref byte Mask_output, int[] BoxesNum, ref byte label);
- [DllImport("model_infer.dll", EntryPoint = "DestructModel")] // 分割、检测、识别模型销毁方法
- public static extern void DestructModel();
- /**********************************************************************/
- /****************** 2.控制参数的声明 *****************/
- /**********************************************************************/
- // 模型基本参数
- string imgfile = null; // 推理的图片路径 -- 单张图片路径
- List<string> imgfiles = new List<string>(); // 推理的图片路径 -- 多张图片路径
- string videofile = null; // 推理的视频路径
- bool use_gpu = false; // 是否使用gpu
- int gpu_id = 0; // 默认GPU_ID为0
- float det_threshold = 0.5F; // 设置阈值 -- 默认0.5
- string model_type = "det"; // 模型类型 -- 检测: det / paddlex
- string model_filename = null; // *.pdmodel -- 模型文件
- string params_filename = null; // *.pdiparams == 参数文件
- string cfg_file = null; // *.yml -- 配置文件
- // paddlex模型下的实际模型类型
- byte[] paddlex_model_type = new byte[10]; // det/seg/clas + \0
- // 记录paddlex模式存在
- bool paddlex_doing = false;
- // 图片类型
- string[] img_type = {"jpg", "png", "JPEG", "jpeg"};
- // 模型已完成初始化的标志
- static int has_model_init = 0;
- // 是否正在进行推理预测
- static int is_infer = 0;
- // 是否中断推理
- static int isBreakInfer = 0;
- // 推理线程进行标志
- static int infer_one_img_flag = 0;
- static int infer_many_img_flag = 0;
- static int infer_video_img_flag = 0;
- // 连续推理的间隔ms
- int continue_infer_delay = 50;
- /**********************************************************************/
- /************** 3.窗体加载与关闭的实现 ***************/
- /**********************************************************************/
- public Form1()
- {
- InitializeComponent();
- }
- private void Form1_Load(object sender, EventArgs e)
- {
- comboBox1.SelectedIndex = 0; // 初始运行环境 -- cpu
- comboBox2.SelectedIndex = 0; // 初始模型 -- det
- comboBox3.SelectedIndex = 5; // 初始阈值 -- 0.5
- numericUpDown1.Value = 50; // 设置初始连续推理间隔为50ms
- label7.Text = "0.00"; // 默认推理耗时
- textBox1.Text = "0"; // 默认GPU_ID为0
- }
- private void Form1_FromClosing(object sender, EventArgs e)
- {
- while (is_infer != 0) // 有推理进程在运行
- {
- isBreakInfer = 1; // 关掉进程
- } // 等待推理进程完全结束
- if (has_model_init == 1) // 有初始化的模型存在,销毁模型后正常退出
- {
- DestructModel(); // 销毁模型
- }
- }
- /**********************************************************************/
- /***************** 4.细节参数选项实现 ***************/
- /**********************************************************************/
- int comboBox_clicked = 0;
- int comboBox1_last_index = 0;
- // 选择运行环境 - 是否使用GPU
- private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
- {
- // 推理过程中,不支持运行环境选择
- if (is_infer == 1 && comboBox_clicked == 0)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择运行环境重新初始化!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- comboBox_clicked = 1;
- comboBox1.SelectedIndex = comboBox1_last_index; // 使用上一次改变后得到的index
- return;
- }
- // 已经初始化,不支持运行环境选择
- if (has_model_init == 1 && comboBox_clicked == 0)
- {
- MessageBox.Show("模型已初始化,请销毁模型后再进行运行环境选择!\n(CPU,GPU)", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- comboBox_clicked = 1;
- comboBox1.SelectedIndex = comboBox1_last_index; // 使用上一次改变后得到的index
- return;
- }
- // 对应两种运行环境
- if (comboBox1.SelectedItem.ToString() == "GPU") // 使用gpu
- {
- use_gpu = true;
- }
- else if (comboBox1.SelectedItem.ToString() == "CPU")
- {
- use_gpu = false;
- }
- comboBox1_last_index = comboBox1.SelectedIndex;
- comboBox_clicked = 0;
- }
- // 修改GPU_ID -- 指定gpu
- int last_gpu_id = 0;
- int gpu_id_done = 0;
- private void textBox1_TextChanged(object sender, EventArgs e)
- {
- // 推理过程中,不支持GPU指定 -- 未定义操作
- if (is_infer == 1 && gpu_id_done == 0)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择指定GPU重新初始化!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- gpu_id_done = 1;
- gpu_id = last_gpu_id;
- textBox1.Text = $"{gpu_id}";
- return;
- }
- // 已经初始化,不支持GPU指定 -- 未定义操作
- if (has_model_init == 1 && gpu_id_done == 0)
- {
- MessageBox.Show("模型已初始化,请销毁模型后再进行GPU指定!\n(GPU:x)", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- gpu_id_done = 1;
- gpu_id = last_gpu_id;
- textBox1.Text = $"{gpu_id}";
- return;
- }
- if (gpu_id_done == 0) // 定义操作下的修改才会执行以下内容
- {
- string gpu_id_str = textBox1.Text.ToString();
- if (gpu_id_str.Length != 0)
- {
- last_gpu_id = gpu_id;
- try
- {
- gpu_id = Int32.Parse(gpu_id_str); // 获取新的GPU_id
- }
- catch (Exception ex)
- {
- gpu_id = last_gpu_id;
- textBox1.Text = $"{gpu_id}";
- MessageBox.Show("GPU_ID只能输入数字!");
- }
- }
- }
- gpu_id_done = 0; // 复原状态值
- }
- int comboBox2_last_index = 0;
- // 执行推理的模型的类型选择
- private void comboBox2_SelectedIndexChanged(object sender, EventArgs e)
- {
- // 推理过程中,不支持模型类型选择
- if (is_infer == 1 && comboBox_clicked == 0)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择模型类型重新初始化!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- comboBox_clicked = 1;
- comboBox2.SelectedIndex = comboBox2_last_index; // 使用上一次改变后得到的index
- return;
- }
- // 已经初始化,发出警告,提示重新初始化,模型类型的修改才会生效
- if (has_model_init == 1 && comboBox_clicked == 0)
- {
- MessageBox.Show("模型已初始化,请销毁模型后再进行模型类型选择!\n(det,seg,clas)", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- comboBox_clicked = 1;
- comboBox2.SelectedIndex = comboBox2_last_index; // 使用上一次改变后得到的index
- return;
- }
- // 对应三种类型
- if (comboBox2.SelectedItem.ToString() == "det") // 加载检测模型 -- 推理已实现
- {
- model_type = comboBox2.SelectedItem.ToString();
- paddlex_doing = false; // 进入非paddlex模式 -- 检测
- }
- else if (comboBox2.SelectedItem.ToString() == "seg") // 加载分割模型 -- 推理已实现
- {
- model_type = comboBox2.SelectedItem.ToString();
- paddlex_doing = false; // 进入非paddlex模式 -- 分割
- }
- else if (comboBox2.SelectedItem.ToString() == "clas") // 加载识别模型 -- 推理已实现
- {
- model_type = comboBox2.SelectedItem.ToString();
- paddlex_doing = false; // 进入非paddlex模式 -- 识别
- }
- else if (comboBox2.SelectedItem.ToString() == "mask") // 加载实例分割MaskRCNN模型 -- 推理已实现
- {
- model_type = comboBox2.SelectedItem.ToString();
- paddlex_doing = false; // 进入非paddlex模式 -- 实则也为paddlex导出的模型
- }
- else if (comboBox2.SelectedItem.ToString() == "paddlex") // 加载识别模型 -- 推理已实现
- {
- model_type = comboBox2.SelectedItem.ToString();
- // 重复选中paddlex,不修改状态
- }
- comboBox2_last_index = comboBox2.SelectedIndex;
-
- comboBox_clicked = 0;
- }
-
- int comboBox3_last_index = 0;
- // 设置目标检测的检测阈值
- private void comboBox3_SelectedIndexChanged(object sender, EventArgs e)
- {
- // 推理过程中,不支持检测阈值选择
- if (is_infer == 1 && comboBox_clicked == 0)
- {
- MessageBox.Show("正在推理中,检测阈值修改将在本次模型推理完成后生效!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- comboBox_clicked = 1;
- comboBox3.SelectedIndex = comboBox3_last_index; // 使用上一次改变后得到的index
- return;
- }
- // 修改检测阈值
- det_threshold = float.Parse(comboBox3.SelectedItem.ToString());
- comboBox3_last_index = comboBox3.SelectedIndex; // 保存本次的索引
- comboBox_clicked = 0;
- }
- // 连续推理的间隔时间长度 -- 图片文件夹推理
- private void numericUpDown1_ValueChanged(object sender, EventArgs e)
- {
- // 配置连续推理的延时
- continue_infer_delay = ((int)numericUpDown1.Value);
- }
- /**********************************************************************/
- /***************** 5.选择控制组件实现 ***************/
- /**********************************************************************/
- // 加载模型相关文件的文件夹 -- 测试完成
- private void button1_Click(object sender, EventArgs e)
- {
- // 推理过程中,不支持模型初始化
- if (is_infer == 1)
- {
- MessageBox.Show("正在推理中,请推理完成后再初始化加载模型!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- return;
- }
- // 先检查MaskRCNN启动状态
- if (!CheckMaskRCNN_workOnGpu(model_type, use_gpu)) // MaskRCNN环境不在GPU,则报错提醒
- {
- MessageBox.Show("MaskRCNN推理仅支持GPU环境,请重新选择启动环境!\n(因为CPU环境可能存在内存不足,导致推理失败。)", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- return;
- }
- int dir_load_flag = 0; // 文件夹选择的标志位
- string dir_path = null;
- folderBrowserDialog1.Description = "请选择模型文件夹";
- DialogResult folder = folderBrowserDialog1.ShowDialog();
- if (folder == DialogResult.OK || folder == DialogResult.Yes)
- {
- dir_path = folderBrowserDialog1.SelectedPath;
- if (string.IsNullOrEmpty(dir_path)) // 判断是否选择了模型文件
- {
- MessageBox.Show("请选择模型路径/模型路径为空!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- dir_load_flag = 0;
- }
- else
- {
- dir_load_flag = 1;
- }
- }
- if (dir_load_flag == 1) // 寻找模型文件
- {
- List<FileInfo> model_lst = new List<FileInfo>();
- List<FileInfo> params_lst = new List<FileInfo>();
- List<FileInfo> cfg_lst = new List<FileInfo>();
- model_lst = getFile(dir_path, ".pdmodel", model_lst); // 返回匹配的文件
- params_lst = getFile(dir_path, ".pdiparams", params_lst); // 返回匹配的文件
- cfg_lst = getFile(dir_path, ".yml", cfg_lst); // 返回匹配的文件
- if (cfg_lst.Count == 0)
- cfg_lst = getFile(dir_path, ".yaml", cfg_lst); // 返回匹配的文件
- if (model_lst.Count != 1 || params_lst.Count != 1)
- {
- MessageBox.Show("模型文件加载失败!\n请注意模型文件夹下应包含以下文件各一个:\n*.pdmodel, *.pdiparams", "提示");
- return;
- }
- model_filename = model_lst[0].FullName;
- params_filename = params_lst[0].FullName;
- if (cfg_lst.Count == 0) // 没有yml文件
- {
- MessageBox.Show("模型文件加载失败!\n请注意模型文件夹下应包含以下文件:\nmodel.yml/model.yaml", "提示");
- return;
- }
- else if (cfg_lst.Count > 2) // yml过多, > 2
- {
- MessageBox.Show("模型文件加载失败!\n请注意模型文件夹下应至多包含以下文件(yml文件个数不得超过2):\nmodel.yml/model.yaml,pipeline.yml/pipeline.yaml", "提示");
- return;
- }
- else if (cfg_lst.Count == 2) // 对于包含多个yml文件的情况的处理 , == 2, 及针对paddlex的处理
- {
- // 筛选yml文件 -- 只需要model.yml
- for (int i = 0; i < 2; i++)
- {
- if (cfg_lst[i].Name == "model.yml" || cfg_lst[i].Name == "model.yaml")
- {
- cfg_file = cfg_lst[i].FullName;
- break;
- }
- }
- }
- else if (cfg_lst.Count == 1) // 直接取出唯一的yml文件
- {
- cfg_file = cfg_lst[0].FullName;
- }
- int raise_ex_flag = 0; // 是否发生了异常
- int is_Mask = 0; // 当前初始化模型是否未MaskRCNN
- if (has_model_init == 1) // 已经初始化,再次初始化前要完成上一个模型的销毁
- {
- // 销毁模型
- DestructModel();
- // 初始化模型
- try
- {
- // 保持paddlex模式
- if (paddlex_doing == true) model_type = "paddlex";
- if (model_type == "mask")
- {
- model_type = "paddlex"; // 因为MaskRCNN来自paddlex训练,所以这里先转未paddlex
- is_Mask = 1;
- }
- InitModel(model_type, model_filename, params_filename, cfg_file, use_gpu, gpu_id, ref paddlex_model_type[0]);
- if (is_Mask == 1) // 初始化完成后还原model_type
- {
- model_type = "mask";
- }
- if (model_type == "paddlex") // 如果当前初始模型类型为paddlex,则初始化完成后,转为paddlex模型的实际类型
- {
- paddlex_doing = true; // 进入paddlex类型模式
- model_type = System.Text.Encoding.UTF8.GetString(paddlex_model_type).Split('\0')[0]; // 得到实际运行的模型类型 -- Split去掉多余的\0(原byte[]长度为10,有许多多余的\0)
- }
- }
- catch (Exception ex)
- {
- raise_ex_flag = 1; // 发生了异常
- MessageBox.Show("1.请确定文件中包含有效的模型文件(*.pdmodel, *.pdiparams, *.yml)!\n2.请检查模型文件与模型类型是否一致!\n3.其它原因:GPU号有误,yml中预处理有误...", "模型初始化失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- }
- else
- {
- // 初始化模型
- try
- {
- // 保持paddlex模式
- if (paddlex_doing == true) model_type = "paddlex";
- if (model_type == "mask")
- {
- model_type = "paddlex"; // 因为MaskRCNN来自paddlex训练,所以这里先转未paddlex
- is_Mask = 1;
- }
- InitModel(model_type, model_filename, params_filename, cfg_file, use_gpu, gpu_id, ref paddlex_model_type[0]);
- if (is_Mask == 1) // 初始化完成后还原model_type
- {
- model_type = "mask";
- }
- if (model_type == "paddlex") // 如果当前初始模型类型为paddlex,则初始化完成后,转为paddlex模型的实际类型
- {
- paddlex_doing = true; // 进入paddlex类型模式
- model_type = System.Text.Encoding.UTF8.GetString(paddlex_model_type).Split('\0')[0]; // 得到实际运行的模型类型
- }
- }
- catch (Exception ex)
- {
- raise_ex_flag = 1; // 发生了异常
- MessageBox.Show("1.请确定文件中包含有效的模型文件(*.pdmodel, *.pdiparams, *.yml)!\n2.请检查模型文件与模型类型是否一致!\n3.其它原因:GPU号有误,yml中预处理有误...", "模型初始化失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- }
- if (raise_ex_flag == 0) // 未发生异常时,才进行正常的运行提示
- {
- has_model_init = 1; // 已经完成初始化
- if (use_gpu)
- {
- MessageBox.Show($"模型文件已加载到GPU:{gpu_id}!\n(模型类型为: {model_type.Split('\0')[0]})", "提示");
- }
- else
- {
- MessageBox.Show($"模型类型为: {model_type.Split('\0')[0]}", "提示");
- }
- button1.Text = "模型已初始化"; // 更改按键提示信息
- }
- }
- }
- // 加载单张图片 -- 测试完成
- private void button2_Click(object sender, EventArgs e)
- {
- // 推理过程中,不支持推理数据集选择与加载
- if (is_infer == 1)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择推理数据!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- return;
- }
- int has_load_img_file_flag = 1;
- openFileDialog1.Filter = "(*.png;*.jpg;*.JPEG;*.jpeg)|*.*"; // 设置打开的文件类型
- DialogResult dr = openFileDialog1.ShowDialog();
- //获取所打开文件的文件名
- string filename = openFileDialog1.FileName;
- if (dr != System.Windows.Forms.DialogResult.OK || string.IsNullOrEmpty(filename)) // 检验文件是否选择成功
- {
- has_load_img_file_flag = 0; // 没有读取到图片路径
- }
- if (has_load_img_file_flag==1) // 正确加载图片才有以下执行
- {
- // 划分文件,获取后缀
- string[] final_tag = filename.Split('.');
- int flag = 0;
- foreach (string type in img_type)
- {
- if (final_tag[1] == type)
- {
- flag = 1; // 类型满足预置图片类型时,flag为1
- imgfile = filename; // 单张图片
- // 显示加载的图片
- pictureBox1.Image = Image.FromFile(imgfile);
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom;
- // 清空其它推理数据的来源
- videofile = null;
- imgfiles.Clear(); // 加载单张图片,清空文件夹图片索引
- MessageBox.Show("图片加载完成!", "提示");
- button2.Text = "图片已加载"; // 更改按键提示信息
- button3.Text = "加载图片文件夹"; // 更改按键提示信息
- button4.Text = "加载视频流"; // 更改按键提示信息
- }
- }
- }
- }
- // 加载文件夹图片
- private void button3_Click(object sender, EventArgs e)
- {
- // 推理过程中,不支持推理数据集选择与加载
- if (is_infer == 1)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择推理数据!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- return;
- }
- int img_dir_load_flag = 0;
- string img_dir_path = null;
- folderBrowserDialog1.Description = "请选择模型文件夹";
- DialogResult folder = folderBrowserDialog1.ShowDialog();
- if (folder == DialogResult.OK || folder == DialogResult.Yes)
- {
- img_dir_path = folderBrowserDialog1.SelectedPath;
- if (string.IsNullOrEmpty(img_dir_path)) // 判断是否选择了模型文件
- {
- MessageBox.Show("请选择图片文件夹路径/图片文件夹路径为空!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- img_dir_load_flag = 0;
- }
- else
- {
- img_dir_load_flag = 1;
- }
- }
- if (img_dir_load_flag == 1) // 读取文件夹中的指定图片文件
- {
- List<FileInfo> lst = new List<FileInfo>();
- lst = getFile(img_dir_path, ".jpg", lst); // 返回匹配的文件
- lst = getFile(img_dir_path, ".png", lst); // 返回匹配的文件
- lst = getFile(img_dir_path, ".JPEG", lst); // 返回匹配的文件
- foreach (FileInfo Image_File in lst) // 添加文件
- {
- imgfiles.Add(Image_File.FullName);
- }
- if (imgfiles.Count == 0)
- {
- MessageBox.Show("请输入选择非空/包含正确图片类型的图片文件夹!\n(*.png, *.jpg, *.JPEG)", "图片解析失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- return; // 提前终止该函数操作 -- 保留原有加载数据
- }
- // 展示第一张图片
- // 显示加载的图片
- pictureBox1.Image = Image.FromFile(imgfiles[0]);
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom;
- // 清空其它推理数据的来源
- imgfile = null; // 既然加载文件夹,则单张图片的索引应该清空
- videofile = null;
- MessageBox.Show("图片文件夹加载完成!", "提示");
- button3.Text = "图片文件夹已加载"; // 更改按键提示信息
- button2.Text = "加载图片"; // 更改按键提示信息
- button4.Text = "加载视频流"; // 更改按键提示信息
- }
-
- }
- // 加载视频流
- private void button4_Click(object sender, EventArgs e)
- {
- // 推理过程中,不支持模型初始化
- if (is_infer == 1)
- {
- MessageBox.Show("正在推理中,请推理完成后再选择推理数据!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- return;
- }
- int has_load_mp4_file_flag = 1;
- openFileDialog1.Filter = "(*.mp4)|*.*"; // 设置打开的文件类型
- DialogResult dr = openFileDialog1.ShowDialog();
- //获取所打开文件的文件名
- string filename = openFileDialog1.FileName;
- if (dr != System.Windows.Forms.DialogResult.OK || string.IsNullOrEmpty(filename)) // 检验文件是否选择成功
- {
- if (string.IsNullOrEmpty(filename)) MessageBox.Show("请选择视频(*.mp4)文件!", "视频路径为空", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- has_load_mp4_file_flag = 0;
- }
-
- if (has_load_mp4_file_flag==1) // 读取到视频mp4
- {
- // 划分文件,获取后缀
- string[] final_tag = filename.Split('.');
- if (final_tag[1] == "mp4")
- {
- videofile = filename; // mp4视频路径
- Bitmap image = null;
- Mat frame = new Mat();
- VideoCapture capture = new VideoCapture(); // 创建一个摄像头
- capture.Open(videofile);
- bool read_success = capture.Read(frame); // 帧是否读取成功
- if (!read_success)
- {
- MessageBox.Show("无法读取视频的帧!!!", "提示");
- }
- else
- {
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- // 显示加载的视频的第一帧
- pictureBox1.Image = image;
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom;
- capture = null; // 收回内存
- frame = null; // 收回内存
- image = null; // 收回内存
- // 清空其它推理数据的来源
- imgfile = null;
- imgfiles.Clear(); // 加载单张图片,清空文件夹图片索引
- MessageBox.Show("视频加载完成!", "提示");
- button4.Text = "视频流已加载"; // 更改按键提示信息
- button2.Text = "加载图片"; // 更改按键提示信息
- button3.Text = "加载图片文件夹"; // 更改按键提示信息
- }
- }
- else
- {
- // 保持原有数据加载情况,并发出错误警告
- MessageBox.Show("请选择mp4视频文件!", "视频资源加载失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- }
- }
- // 执行推理
- private void button5_Click(object sender, EventArgs e)
- {
- // has_model_init: 确保模型已经初始化
- if (imgfile != null && is_infer==0 && has_model_init == 1) // 单张图片的预测 -- is_infer 等于 0, 表示没有任何进程在运行
- {
- Thread infer_one_img_thread = null;
- if (model_type == "det") infer_one_img_thread = new Thread(new ThreadStart(delegate { det_infer_one_img(); }));
- else if (model_type == "seg") infer_one_img_thread = new Thread(new ThreadStart(delegate { seg_infer_one_img(); }));
- else if (model_type == "clas") infer_one_img_thread = new Thread(new ThreadStart(delegate { cls_infer_one_img(); }));
- else if (model_type == "mask") infer_one_img_thread = new Thread(new ThreadStart(delegate { mask_infer_one_img(); }));
- MessageBox.Show("开始图片推理任务!", "提示");
- infer_one_img_thread.Start(); // 启动任务
- infer_one_img_flag = 1; // 标志着图片正在推理执行
- }
- else if (imgfiles.Count != 0 && is_infer == 0 && has_model_init == 1) // 图片文件夹的预测
- {
- Thread infer_many_img_thread = null;
- if (model_type == "det") infer_many_img_thread = new Thread(new ThreadStart(delegate { det_infer_many_img(); }));
- else if (model_type == "seg") infer_many_img_thread = new Thread(new ThreadStart(delegate { seg_infer_many_img(); }));
- else if (model_type == "clas") infer_many_img_thread = new Thread(new ThreadStart(delegate { cls_infer_many_img(); }));
- else if (model_type == "mask") infer_many_img_thread = new Thread(new ThreadStart(delegate { mask_infer_many_img(); }));
- MessageBox.Show("开始图片文件夹推理任务!", "提示");
- infer_many_img_thread.Start(); // 启动任务
- infer_many_img_flag = 1; // 标志着图片文件夹正在推理执行
- }
- else if (videofile != null && is_infer == 0 && has_model_init == 1)
- {
- Thread infer_video_img_thread = null;
- if (model_type == "det") infer_video_img_thread = new Thread(new ThreadStart(delegate { det_infer_video_img(); }));
- else if (model_type == "seg") infer_video_img_thread = new Thread(new ThreadStart(delegate { seg_infer_video_img(); }));
- else if (model_type == "clas") infer_video_img_thread = new Thread(new ThreadStart(delegate { cls_infer_video_img(); }));
- else if (model_type == "mask") infer_video_img_thread = new Thread(new ThreadStart(delegate { mask_infer_video_img(); }));
- MessageBox.Show("开始视频推理任务!", "提示");
- infer_video_img_thread.Start(); // 启动任务
- infer_video_img_flag = 1; // 标志着视频正在推理执行
- }
- else if (is_infer == 1 && has_model_init == 1)
- {
- if (infer_one_img_flag == 1) MessageBox.Show("正在进行推理任务!", "请勿再执行图片推理任务", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- if (infer_many_img_flag == 1) MessageBox.Show("正在进行推理任务!", "请勿再执行图片文件夹推理任务", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- if (infer_video_img_flag == 1) MessageBox.Show("正在进行推理任务!", "请勿再执行视频推理任务", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- }
-
- if (has_model_init == 0 && (imgfile == null && imgfiles.Count == 0 && videofile == null)) // 模型未初始化,数据未加载
- {
- MessageBox.Show("请先初始化模型,并选择加载的推理数据后,再点击模型推理!", "推理执行失败", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- }
- else if (has_model_init == 0 && (imgfile != null || imgfiles.Count != 0 || videofile != null)) // 模型未初始化,数据加载
- {
- MessageBox.Show("请初始化模型,再点击模型推理!", "推理执行失败", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- }
- else if (has_model_init != 0 && (imgfile == null && imgfiles.Count == 0 && videofile == null)) // 模型初始化,数据未加载
- {
- MessageBox.Show("请选择加载的推理数据,再点击模型推理!", "推理执行失败", MessageBoxButtons.OK, MessageBoxIcon.Warning);
- }
- }
- // 终止推理
- private void button6_Click(object sender, EventArgs e)
- {
- isBreakInfer = 1; // 发出推理终止的信号 -- 线程会开始终止(非kill终止)
- }
- // 销毁已初始化好的模型
- private void button7_Click(object sender, EventArgs e)
- {
- if (is_infer == 0)
- {
- if (has_model_init == 1)
- {
- // 销毁模型
- try // 进行未定义的模型销毁时的异常处理
- {
- DestructModel();
- }
- catch (Exception ex)
- {
- MessageBox.Show("当前未初始化模型,无需销毁!", "模型销毁失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- has_model_init = 0;
- }
- button1.Text = "初始化模型"; // 重置按键状态
- }
- else
- {
- MessageBox.Show("请先中断模型推理,再销毁已初始化的模型!", "提示", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- }
- /***********************************************************************/
- /***************** 6.可视化推理实现部分 **************/
- /***********************************************************************/
- // 检测单张图片
- private void det_infer_one_img()
- {
- is_infer = 1; // 进入推理
-
- byte[] color_map = get_color_map_list(256);
- //Bitmap bmp = new Bitmap(imgfile);
- Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(imgfile));
- byte[] inputData = GetBGRValues(bmp, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- int[] boxesInfo = new int[1]; // 10 boundingbox
- byte[] labellist = new byte[1000]; //新建字节数组:label1_str label2_str
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- // 第四个参数为输入图像的通道数
- Det_ModelPredict(inputData, bmp.Width, bmp.Height, 3, results, boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- // MessageBox.Show($"Box_Number: {boxesInfo[0]}");
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4];
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形,书写类别
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 转换回bitmap进行显示
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_one_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 检测图片文件夹
- private void det_infer_many_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- foreach (string img_file in imgfiles)
- {
- if (isBreakInfer == 1) break; // 中断推理
- Bitmap show_image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(img_file));
- Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(img_file));
- byte[] inputData = GetBGRValues(bmp, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- int[] boxesInfo = new int[1];
- byte[] labellist = new byte[1000]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Det_ModelPredict(inputData, bmp.Width, bmp.Height, 3, results, boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- //MessageBox.Show($"Box_Number: {boxesInfo[0]}");
- //Console.WriteLine("labellist: {0}", strGet);
- // 转换为mat数据,方便opencv处理
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4]; // det -- right down
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形,书写类别
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 转换回bitmap进行显示
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 显示图片
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = show_image; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- Thread.Sleep(continue_infer_delay); // 连续识别时,每张图片间隔continue_infer_delay毫秒
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- // DestructModel(); // 销毁模型
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_many_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片文件夹推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 检测视频流
- private void det_infer_video_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- VideoCapture capture = new VideoCapture();
- capture.Open(videofile); // 读取视频
- using Mat frame = new Mat();
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- while (true)
- {
- if (isBreakInfer == 1) break;
- capture.Read(frame);//图像存储一帧数据
- if (frame.Empty()) break;
- // ------------- 原始图片 ----------
- Bitmap image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame); //显示原始图片到box1
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = image; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // ------------- 送入推理的图片以及数据 ----------
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- byte[] inputData = GetBGRValues(image, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- int[] boxesInfo = new int[1];
- byte[] labellist = new byte[1000]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Det_ModelPredict(inputData, image.Width, image.Height, 3, results, boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- //Console.WriteLine("labellist: {0}", strGet);
- // 转换为mat数据,方便opencv处理
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(image);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4];
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 转换回bitmap进行显示
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = image;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1; // 发生了异常
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- // DestructModel(); // 销毁模型
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_video_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("视频推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 识别单张图片 -- 固定大小展示:short_side: 512
- private void cls_infer_one_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- //Bitmap bmp = new Bitmap(imgfile);
- Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(imgfile));
- // resize()
- var short_side = bmp.Width > bmp.Height ? bmp.Height : bmp.Width;
- double resize_scale = 512.0 / short_side;
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);
- OpenCvSharp.Mat output_mat = new Mat();
- int new_height = (int)(bmp.Height * resize_scale);
- int new_width = (int)(bmp.Width * resize_scale);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(new_width, new_height));
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(bmp, out int stride);
- float[] pre_score = new float[1];
- int[] pre_category_id = new int[1];
- byte[] pre_category = new byte[200]; //新建字节数组
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Cls_ModelPredict(inputData, bmp.Width, bmp.Height, 3, ref pre_score[0], ref pre_category[0], ref pre_category_id[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string category_strGet = System.Text.Encoding.Default.GetString(pre_category, 0, pre_category.Length).Split('\0')[0]; //将类别字节数组转换为字符串
- OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);//用bitmap转换为mat
- // 对应类别的颜色
- int[] color_ = { (int)(color_map[(pre_category_id[0]%256)*3]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 1]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{category_strGet}-{pre_category_id[0]}-{pre_score[0]:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = bmp.Width - text_size.Width; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = text_size.Height;
- // 书写类别
- Cv2.PutText(mat, $"{category_strGet}-{pre_category_id[0]}-{pre_score[0]:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
-
- // 转换回bitmap进行显示
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 收回内存
- input_mat = null;
- output_mat = null;
- mat = null;
- inputData = null;
- pre_score = null;
- pre_category_id = null;
- pre_category = null;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_one_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 识别图片文件夹 -- 固定大小展示:short_side: 512
- private void cls_infer_many_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- foreach (string img_file in imgfiles)
- {
- if (isBreakInfer == 1) break; // 中断推理
- //Bitmap bmp = new Bitmap(img_file);
- Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(img_file));
- // resize()
- var short_side = bmp.Width > bmp.Height ? bmp.Height : bmp.Width;
- double resize_scale = 512.0 / short_side;
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);
- OpenCvSharp.Mat output_mat = new Mat();
- int new_height = (int)(bmp.Height * resize_scale);
- int new_width = (int)(bmp.Width * resize_scale);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(new_width, new_height));
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(bmp, out int stride);
- float[] pre_score = new float[1];
- int[] pre_category_id = new int[1];
- byte[] pre_category = new byte[200]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Cls_ModelPredict(inputData, bmp.Width, bmp.Height, 3, ref pre_score[0], ref pre_category[0], ref pre_category_id[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string category_strGet = System.Text.Encoding.Default.GetString(pre_category, 0, pre_category.Length).Split('\0')[0]; //将类别字节数组转换为字符串
- OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);//用bitmap转换为mat
- // 对应类别的颜色
- int[] color_ = { (int)(color_map[(pre_category_id[0]%256)*3]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 1]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{category_strGet}-{pre_category_id[0]}-:{pre_score[0]:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline);
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = bmp.Width - text_size.Width; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = text_size.Height;
- // 书写类别
- Cv2.PutText(mat, $"{category_strGet}-{pre_category_id[0]}-:{pre_score[0]:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- // 转换回bitmap进行显示
- bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 原图显示
- Bitmap show_image = new Bitmap(img_file);
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = show_image; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 收回内存
- mat = null;
- inputData = null;
- pre_score = null;
- pre_category_id = null;
- pre_category = null;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- Thread.Sleep(continue_infer_delay); // 连续识别时,每张图片间隔continue_infer_delay毫秒
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_many_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片文件夹推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 识别视频 -- 固定大小展示:short_side: 512
- private void cls_infer_video_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- VideoCapture capture = new VideoCapture();
- capture.Open(videofile); // 读取视频
- using Mat frame = new Mat();
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- while (true)
- {
- if (isBreakInfer == 1) break;
- capture.Read(frame);//图像存储一帧数据
- if (frame.Empty()) break;
- // ------------- 原始图片 ----------
- Bitmap image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame); //显示原始图片到box1
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = image; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // ------------- 送入推理的图片以及数据 ----------
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- // resize()
- var short_side = image.Width > image.Height ? image.Height : image.Width;
- double resize_scale = 512.0 / short_side;
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(image);
- OpenCvSharp.Mat output_mat = new Mat();
- int new_height = (int)(image.Height * resize_scale);
- int new_width = (int)(image.Width * resize_scale);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(new_width, new_height));
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(image, out int stride);
- float[] pre_score = new float[1];
- int[] pre_category_id = new int[1];
- byte[] pre_category = new byte[200]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Cls_ModelPredict(inputData, image.Width, image.Height, 3, ref pre_score[0], ref pre_category[0], ref pre_category_id[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- string category_strGet = System.Text.Encoding.Default.GetString(pre_category, 0, pre_category.Length).Split('\0')[0]; //将类别字节数组转换为字符串
- OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(image);//用bitmap转换为mat
- // 对应类别的颜色
- int[] color_ = { (int)(color_map[(pre_category_id[0]%256)*3]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 1]),
- (int)(color_map[(pre_category_id[0] % 256) * 3 + 2]) };
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{category_strGet}-{pre_category_id[0]}-:{pre_score[0]:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline);
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = image.Width - text_size.Width; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = text_size.Height;
- // 书写类别
- Cv2.PutText(mat, $"{category_strGet}-{pre_category_id[0]}-:{pre_score[0]:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- // 转换回bitmap进行显示
- image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- // 反馈到另一个picturebox上
- pictureBox2.Image = image;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 收回内存
- mat = null;
- inputData = null;
- pre_score = null;
- pre_category_id = null;
- pre_category = null;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1; // 发生了异常
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- // DestructModel(); // 销毁模型
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_video_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("视频推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 分割图片 -- 固定大小展示:512 X 512
- private void seg_infer_one_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
-
- //Bitmap origin_bmp = new Bitmap(imgfile);
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(imgfile));
- Bitmap input_bmp = null;
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(512, 512));
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- input_mat = null;
- output_mat = null;
- byte[] inputData = GetBGRValues(input_bmp, out int stride);
- byte[] output_map = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Seg_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, ref output_map[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- // 还原原始图像大小
- input_bmp = CreateBitmap(output_map, input_bmp.Width, input_bmp.Height, color_map); // 还原512的输入大小的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(origin_bmp.Width, origin_bmp.Height)); // 还原到与输入一致的图像大小
- input_mat = null; // 回收内存
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 1.0, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- // 反馈到另一个picturebox上
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_one_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 分割图片文件夹 -- 固定大小展示:512 X 512
- private void seg_infer_many_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- foreach (string img_file in imgfiles)
- {
- if (isBreakInfer == 1) break; // 中断推理
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(img_file));
- Bitmap input_bmp = null;
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(512, 512));
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- input_mat = null;
- output_mat = null;
- byte[] inputData = GetBGRValues(input_bmp, out int stride);
- byte[] output_map = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Seg_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, ref output_map[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- // 还原原始图像大小
- input_bmp = CreateBitmap(output_map, input_bmp.Width, input_bmp.Height, color_map); // 还原512的输入大小的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(origin_bmp.Width, origin_bmp.Height)); // 还原到与输入一致的图像大小
- input_mat = null; // 回收内存
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 1.0, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- // 显示图片
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = origin_bmp; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- Thread.Sleep(continue_infer_delay); // 连续识别时,每张图片间隔continue_infer_delay毫秒
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_many_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片文件夹推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // 分割视频流 -- 固定大小展示:512 X 512
- private void seg_infer_video_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- VideoCapture capture = new VideoCapture();
- capture.Open(videofile); // 读取视频
- using Mat frame = new Mat();
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- while (true)
- {
- if (isBreakInfer == 1) break;
- capture.Read(frame);//图像存储一帧数据
- if (frame.Empty()) break;
- // ------------- 原始图片 ----------
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- // ------------- 送入推理的图片以及数据 ----------
- Bitmap input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(512, 512));
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- input_mat = null;
- output_mat = null;
- byte[] inputData = GetBGRValues(input_bmp, out int stride);
- byte[] output_map = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Seg_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, ref output_map[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- // 还原原始图像大小
- input_bmp = CreateBitmap(output_map, input_bmp.Width, input_bmp.Height, color_map); // 还原512的输入大小的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- Cv2.Resize(input_mat, output_mat, new OpenCvSharp.Size(origin_bmp.Width, origin_bmp.Height)); // 还原到与输入一致的图像大小
- input_mat = null; // 回收内存
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 1.0, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
-
- // 显示图片
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = origin_bmp; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1; // 发生了异常
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- // DestructModel(); // 销毁模型
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_video_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("视频推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // MaskRCNN检测单张图片 -- GPU推理正常
- private void mask_infer_one_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(imgfile));
- Bitmap input_bmp = null;
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(origin_bmp, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- byte[] mask_results = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- int[] boxesInfo = new int[1]; // 10 boundingbox
- byte[] labellist = new byte[1000]; //新建字节数组:label1_str label2_str
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- Mask_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, results, ref mask_results[0], boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- input_bmp = CreateBitmap(mask_results, input_bmp.Width, input_bmp.Height, color_map);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 0.65, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- // MessageBox.Show($"Box_Number: {boxesInfo[0]}");
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4];
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- labelindex += 1; // Mask RCNN包含背景,故而加1
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- labelindex -= 1; // 还原类别
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形,书写类别
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 转换回bitmap进行显示
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_one_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // MaskRCNN检测图片文件夹
- private void mask_infer_many_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- foreach (string img_file in imgfiles)
- {
- if (isBreakInfer == 1) break; // 中断推理
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Cv2.ImRead(img_file));
- Bitmap input_bmp = null;
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(origin_bmp, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- byte[] mask_results = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- int[] boxesInfo = new int[1]; // 10 boundingbox
- byte[] labellist = new byte[1000]; //新建字节数组:label1_str label2_str
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Mask_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, results, ref mask_results[0], boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- input_bmp = CreateBitmap(mask_results, input_bmp.Width, input_bmp.Height, color_map);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 1.0, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- // MessageBox.Show($"Box_Number: {boxesInfo[0]}");
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4];
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- labelindex += 1; // Mask RCNN包含背景,故而加1
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- labelindex -= 1; // 还原类别
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形,书写类别
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 显示图片
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = origin_bmp; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // 转换回bitmap进行显示
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- Thread.Sleep(continue_infer_delay); // 连续识别时,每张图片间隔continue_infer_delay毫秒
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1;
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_many_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("图片文件夹推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- // MaskRCNN检测视频流
- private void mask_infer_video_img()
- {
- is_infer = 1; // 进入推理
- byte[] color_map = get_color_map_list(256);
- VideoCapture capture = new VideoCapture();
- capture.Open(videofile); // 读取视频
- using Mat frame = new Mat();
- int raise_ex_flag = 0; // 是否发生了异常
- try
- {
- while (true)
- {
- if (isBreakInfer == 1) break;
- capture.Read(frame);//图像存储一帧数据
- if (frame.Empty()) break;
- // ------------- 原始图片 ----------
- Bitmap origin_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
- // ------------- 送入推理的图片以及数据 ----------
- Bitmap input_bmp = null;
- // resize()
- OpenCvSharp.Mat input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- OpenCvSharp.Mat output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp);
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- byte[] inputData = GetBGRValues(origin_bmp, out int stride);
- float[] resultlist = new float[600];
- IntPtr results = FloatToIntptr(resultlist);
- byte[] mask_results = new byte[input_bmp.Height * input_bmp.Width]; //新建字节数组
- int[] boxesInfo = new int[1]; // 10 boundingbox
- byte[] labellist = new byte[1000]; //新建字节数组:label1_str label2_str
- TimeSpan infer_start_time = new TimeSpan(DateTime.Now.Ticks);
- //第四个参数为输入图像的通道数
- Mask_ModelPredict(inputData, input_bmp.Width, input_bmp.Height, 3, results, ref mask_results[0], boxesInfo, ref labellist[0]);
- TimeSpan infer_end_time = new TimeSpan(DateTime.Now.Ticks);
- input_bmp = CreateBitmap(mask_results, input_bmp.Width, input_bmp.Height, color_map);
- output_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp); // 获取处理后的图像
- input_mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(origin_bmp); // 获取原始图像
- //OpenCvSharp.Mat add_mat = new Mat(); // 叠加后的图像
- Cv2.AddWeighted(output_mat, 1.0, input_mat, 0.35, 1, output_mat); // 执行叠加
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(output_mat);
- string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); //将字节数组转换为字符串
- string[] predict_Label_List = strGet.Split(' '); // 预测的类别情况
- // MessageBox.Show($"Box_Number: {boxesInfo[0]}");
- using OpenCvSharp.Mat mat = OpenCvSharp.Extensions.BitmapConverter.ToMat(input_bmp);//用bitmap转换为mat
- for (int i = 0; i < boxesInfo[0]; i++) // 未绘制图像
- {
- int labelindex = Convert.ToInt32(resultlist[i * 6 + 0]);
- float score = resultlist[i * 6 + 1];
- float left = resultlist[i * 6 + 2];
- float top = resultlist[i * 6 + 3];
- float right = resultlist[i * 6 + 4];
- float down = resultlist[i * 6 + 5];
- if (score > det_threshold)
- {
- labelindex += 1; // Mask RCNN包含背景,故而加1
- int[] color_ = { (int)(color_map[(labelindex%256)*3]),
- (int)(color_map[(labelindex % 256) * 3 + 1]),
- (int)(color_map[(labelindex % 256) * 3 + 2]) };
- labelindex -= 1; // 还原类别
- // 获取文本区域的大小
- var text_size = Cv2.GetTextSize($"{predict_Label_List[i]}-{labelindex}-{score:f2}",
- HersheyFonts.HersheySimplex, 1, 2, out int baseline); // 1倍大小的HersheySimplex,高度为22
- // 获取文本区域的左下顶点 -- 右上角
- int left_down_x = (int)left + 22; // 小偏移调整量: (int)(text_size.Width/10)
- int left_down_y = (int)top + text_size.Height;
- // 绘制矩形,书写类别
- Cv2.Rectangle(mat, new OpenCvSharp.Rect((int)left, (int)top, (int)right, (int)down), new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.AntiAlias);//LineTypes.AntiAlias:反锯齿效果
- Cv2.PutText(mat, $"{predict_Label_List[i]}-{labelindex}-: {score:f2}", new OpenCvSharp.Point(left_down_x, left_down_y), HersheyFonts.HersheySimplex, 1, new OpenCvSharp.Scalar(color_[0], color_[1], color_[2]), 2, LineTypes.Link4);
- }
- }
- // 显示图片
- if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
- pictureBox1.Image = origin_bmp; //显示原始图片到box1
- pictureBox1.SizeMode = PictureBoxSizeMode.Zoom; //显示原始图片到box1
- // 转换回bitmap进行显示
- input_bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat);
- if (pictureBox2.Image != null) pictureBox2.Image.Dispose();
- pictureBox2.Image = input_bmp;
- pictureBox2.SizeMode = PictureBoxSizeMode.Zoom;
- // 展示推理耗时
- TimeSpan start2end_time = infer_end_time.Subtract(infer_start_time).Duration();
- double cost_milliseconds = start2end_time.TotalMilliseconds;
- // 通过委托展示到label上
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { $"{cost_milliseconds:f2}" });
- }
- }
- catch (Exception e)
- {
- raise_ex_flag = 1; // 发生了异常
- // 默认耗时为0ms
- Action<String> AsyncUIDelegate = delegate (string n) { label7.Text = n; };//定义一个委托
- label7.Invoke(AsyncUIDelegate, new object[] { "0.00" });
- MessageBox.Show("1.请检查模型文件与模型类型是否一致!\n2.内存溢出,yml预处理有误,图片格式确保为1/3通道...", "模型运行失败", MessageBoxButtons.OK, MessageBoxIcon.Error);
- }
- isBreakInfer = 0; // 清空标志
- is_infer = 0; // 退出推理 -- 解除推理状态
- infer_video_img_flag = 0; // 重置当前推理状态 -- 解除图片推理状态
- if (raise_ex_flag == 0) MessageBox.Show("视频推理完成!"); // 未发生异常,正常显示推理完成提示
- }
- /**********************************************************************/
- /***************** 7.部分推理组件函数 ***************/
- /**********************************************************************/
- /// <summary>
- /// 从内存流中指定位置,读取数据
- /// </summary>
- /// <param name="curStream"></param>
- /// <param name="startPosition"></param>
- /// <param name="length"></param>
- /// <returns></returns>
- public static int ReadData(MemoryStream curStream, int startPosition, int length)
- {
- int result = -1;
- byte[] tempData = new byte[length];
- curStream.Position = startPosition;
- curStream.Read(tempData, 0, length);
- result = BitConverter.ToInt32(tempData, 0);
- return result;
- }
- /// <summary>
- /// 使用byte[]数据,生成三通道 BMP 位图
- /// </summary>
- /// <param name="originalImageData"></param>
- /// <param name="originalWidth"></param>
- /// <param name="originalHeight"></param>
- /// <returns></returns>
- public static Bitmap CreateBitmap(byte[] originalImageData, int originalWidth, int originalHeight, byte[] color_map)
- {
- // 指定8位格式,即256色
- Bitmap resultBitmap = new Bitmap(originalWidth, originalHeight, System.Drawing.Imaging.PixelFormat.Format8bppIndexed);
- // 将该位图存入内存中
- MemoryStream curImageStream = new MemoryStream();
- resultBitmap.Save(curImageStream, System.Drawing.Imaging.ImageFormat.Bmp);
- curImageStream.Flush();
- // 由于位图数据需要DWORD对齐(4byte倍数),计算需要补位的个数
- int curPadNum = ((originalWidth * 8 + 31) / 32 * 4) - originalWidth;
- // 最终生成的位图数据大小
- int bitmapDataSize = ((originalWidth * 8 + 31) / 32 * 4) * originalHeight;
- // 数据部分相对文件开始偏移,具体可以参考位图文件格式
- int dataOffset = ReadData(curImageStream, 10, 4);
- // 改变调色板,因为默认的调色板是32位彩色的,需要修改为256色的调色板
- int paletteStart = 54;
- int paletteEnd = dataOffset;
- int color = 0;
- for (int i = paletteStart; i < paletteEnd; i += 4)
- {
- byte[] tempColor = new byte[4];
- tempColor[0] = (byte)color;
- tempColor[1] = (byte)color;
- tempColor[2] = (byte)color;
- tempColor[3] = (byte)0;
- color++;
- curImageStream.Position = i;
- curImageStream.Write(tempColor, 0, 4);
- }
- // 最终生成的位图数据,以及大小,高度没有变,宽度需要调整
- byte[] destImageData = new byte[bitmapDataSize];
- int destWidth = originalWidth + curPadNum;
- // 生成最终的位图数据,注意的是,位图数据 从左到右,从下到上,所以需要颠倒
- for (int originalRowIndex = originalHeight - 1; originalRowIndex >= 0; originalRowIndex--)
- {
- int destRowIndex = originalHeight - originalRowIndex - 1;
- for (int dataIndex = 0; dataIndex < originalWidth; dataIndex++)
- {
- // 同时还要注意,新的位图数据的宽度已经变化destWidth,否则会产生错位
- destImageData[destRowIndex * destWidth + dataIndex] = originalImageData[originalRowIndex * originalWidth + dataIndex];
- }
- }
- // 将流的Position移到数据段
- curImageStream.Position = dataOffset;
- // 将新位图数据写入内存中
- curImageStream.Write(destImageData, 0, bitmapDataSize);
- curImageStream.Flush();
- // 将内存中的位图写入Bitmap对象
- resultBitmap = new Bitmap(curImageStream);
- resultBitmap = transForm8to24(resultBitmap, color_map); // 转为3通道图像
- return resultBitmap;
- }
- // 实现bitmap单通道到三通道(分割生成掩码图像(单通道) ==> RGB图像)
- public static Bitmap transForm8to24(Bitmap bmp, byte[] color_map)
- {
- System.Drawing.Rectangle rect = new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height);
- System.Drawing.Imaging.BitmapData bitmapData = bmp.LockBits(rect, System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
- //计算实际8位图容量
- int size8 = bitmapData.Stride * bmp.Height;
- byte[] grayValues = new byte[size8];
- //// 申请目标位图的变量,并将其内存区域锁定
- Bitmap TempBmp = new Bitmap(bmp.Width, bmp.Height, PixelFormat.Format24bppRgb);
- BitmapData TempBmpData = TempBmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height), ImageLockMode.WriteOnly, PixelFormat.Format24bppRgb);
- //// 获取图像参数以及设置24位图信息
- int stride = TempBmpData.Stride; // 扫描线的宽度
- int offset = stride - TempBmp.Width; // 显示宽度与扫描线宽度的间隙
- IntPtr iptr = TempBmpData.Scan0; // 获取bmpData的内存起始位置
- int scanBytes = stride * TempBmp.Height;// 用stride宽度,表示这是内存区域的大小
- //// 下面把原始的显示大小字节数组转换为内存中实际存放的字节数组
- byte[] pixelValues = new byte[scanBytes]; //为目标数组分配内存
- System.Runtime.InteropServices.Marshal.Copy(bitmapData.Scan0, grayValues, 0, size8);
-
- for (int i = 0; i < bmp.Height; i++)
- {
- for (int j = 0; j < bitmapData.Stride; j++)
- {
- if (j >= bmp.Width)
- continue;
- int indexSrc = i * bitmapData.Stride + j;
- int realIndex = i * TempBmpData.Stride + j * 3;
- // color_id:就是预测出来的结果
- int color_id = (int)grayValues[indexSrc] % 256;
- if (color_id == 0) // 分割中类别1对应值1,而背景往往为0,因此这里就将背景置为[0, 0, 0]
- {
- // 空白
- pixelValues[realIndex] = 0;
- pixelValues[realIndex + 1] = 0;
- pixelValues[realIndex + 2] = 0;
- }
- else
- {
- // 替换为color_map中的颜色值
- pixelValues[realIndex] = color_map[color_id * 3];
- pixelValues[realIndex + 1] = color_map[color_id * 3 + 1];
- pixelValues[realIndex + 2] = color_map[color_id * 3 + 2];
- }
- }
- }
- //// 用Marshal的Copy方法,将刚才得到的内存字节数组复制到BitmapData中
- System.Runtime.InteropServices.Marshal.Copy(pixelValues, 0, iptr, scanBytes);
- TempBmp.UnlockBits(TempBmpData); // 解锁内存区域
- bmp.UnlockBits(bitmapData);
- return TempBmp;
- }
- // 生成伪彩色图的RGB值集合(color_map) -- 同时也是适用于检测框分类颜色
- private byte[] get_color_map_list(int num_classes = 256)
- {
- num_classes += 1;
- byte[] color_map = new byte[num_classes * 3];
- for (int i = 0; i < num_classes; i++)
- {
- int j = 0;
- int lab = i;
- while (lab != 0)
- {
- color_map[i * 3] |= (byte)(((lab >> 0) & 1) << (7 - j));
- color_map[i * 3 + 1] |= (byte)(((lab >> 1) & 1) << (7 - j));
- color_map[i * 3 + 2] |= (byte)(((lab >> 2) & 1) << (7 - j));
- j += 1;
- lab >>= 3;
- }
- }
- // 去掉底色
- color_map = color_map.Skip(3).ToArray();
- return color_map;
- }
- /// <summary>
- /// 获得目录下所有文件或指定文件类型文件(包含所有子文件夹)
- /// </summary>
- /// <param name="path">文件夹路径</param>
- /// <param name="extName">扩展名可以多个 例如 .mp3.wma.rm</param>
- /// <returns>List<FileInfo></returns>
- public static List<FileInfo> getFile(string path, string extName, List<FileInfo> lst)
- {
- try
- {
- DirectoryInfo fdir = new DirectoryInfo(path);
- FileInfo[] file = fdir.GetFiles();
- //FileInfo[] file = Directory.GetFiles(path); //文件列表
- if (file.Length != 0) //当前目录文件或文件夹不为空
- {
- foreach (FileInfo f in file) //显示当前目录所有文件
- {
- if (extName.ToLower().IndexOf(f.Extension.ToLower()) >= 0)
- {
- lst.Add(f);
- }
- }
- }
- return lst;
- }
- catch (Exception ex)
- {
- throw ex;
- }
- }
- // 将Btimap类转换为byte[]类函数
- public static byte[] GetBGRValues(Bitmap bmp, out int stride)
- {
- var rect = new Rectangle(0, 0, bmp.Width, bmp.Height);
- var bmpData = bmp.LockBits(rect, ImageLockMode.ReadOnly, bmp.PixelFormat);
- stride = bmpData.Stride;
- var rowBytes = bmpData.Width * Image.GetPixelFormatSize(bmp.PixelFormat) / 8;
- var imgBytes = bmp.Height * rowBytes;
- byte[] rgbValues = new byte[imgBytes];
- IntPtr ptr = bmpData.Scan0;
- for (var i = 0; i < bmp.Height; i++)
- {
- Marshal.Copy(ptr, rgbValues, i * rowBytes, rowBytes);
- ptr += bmpData.Stride;
- }
- bmp.UnlockBits(bmpData);
- return rgbValues;
- }
- // 创建指向float数组类型的IntPtr指针
- public static IntPtr FloatToIntptr(float[] bytes)
- {
- GCHandle hObject = GCHandle.Alloc(bytes, GCHandleType.Pinned);
- return hObject.AddrOfPinnedObject();
- }
- // 检查MaskRCNN模型是否启动在GPU上 -- 只支持GPU推理,因为内存占用较大,CPU可能溢出,导致无法连续推理
- public static bool CheckMaskRCNN_workOnGpu(string model_type, bool use_gpu)
- {
- if (model_type == "mask")
- {
- if (use_gpu == false) // 当且仅当为MaskRCNN时,没有使用GPU会返回false
- return false;
- }
- return true;
- }
- }
- }
|