pipeline.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import pickle
  16. from pathlib import Path
  17. import numpy as np
  18. from ...utils.pp_option import PaddlePredictorOption
  19. from ...common.reader import ReadImage
  20. from ...common.batch_sampler import ImageBatchSampler
  21. from ..components import CropByBoxes
  22. from ..base import BasePipeline
  23. from .result import AttributeRecResult
  24. class AttributeRecPipeline(BasePipeline):
  25. """Attribute Rec Pipeline"""
  26. def __init__(
  27. self,
  28. config: Dict,
  29. device: str = None,
  30. pp_option: PaddlePredictorOption = None,
  31. use_hpip: bool = False,
  32. ):
  33. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  34. self.det_model = self.create_model(config["SubModules"]["Detection"])
  35. self.cls_model = self.create_model(config["SubModules"]["Classification"])
  36. self._crop_by_boxes = CropByBoxes()
  37. self._img_reader = ReadImage(format="BGR")
  38. self.det_threshold = config["SubModules"]["Detection"].get("threshold", 0.5)
  39. self.cls_threshold = config["SubModules"]["Classification"].get(
  40. "threshold", 0.7
  41. )
  42. self.batch_sampler = ImageBatchSampler(
  43. batch_size=config["SubModules"]["Detection"]["batch_size"]
  44. )
  45. self.img_reader = ReadImage(format="BGR")
  46. def predict(
  47. self,
  48. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  49. det_threshold: float = None,
  50. cls_threshold: Union[float, dict, list, None] = None,
  51. **kwargs
  52. ):
  53. det_threshold = self.det_threshold if det_threshold is None else det_threshold
  54. cls_threshold = self.cls_threshold if cls_threshold is None else cls_threshold
  55. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  56. raw_imgs = self.img_reader(batch_data.instances)
  57. all_det_res = list(self.det_model(raw_imgs, threshold=det_threshold))
  58. for input_data, raw_img, det_res in zip(
  59. batch_data.instances, raw_imgs, all_det_res
  60. ):
  61. cls_res = self.get_cls_result(raw_img, det_res, cls_threshold)
  62. yield self.get_final_result(input_data, raw_img, det_res, cls_res)
  63. def get_cls_result(self, raw_img, det_res, cls_threshold):
  64. subs_of_img = list(self._crop_by_boxes(raw_img, det_res["boxes"]))
  65. img_list = [img["img"] for img in subs_of_img]
  66. all_cls_res = list(self.cls_model(img_list, threshold=cls_threshold))
  67. output = {"label": [], "score": []}
  68. for res in all_cls_res:
  69. output["label"].append(res["label_names"])
  70. output["score"].append(res["scores"])
  71. return output
  72. def get_final_result(self, input_data, raw_img, det_res, rec_res):
  73. single_img_res = {"input_path": input_data, "input_img": raw_img, "boxes": []}
  74. for i, obj in enumerate(det_res["boxes"]):
  75. cls_scores = rec_res["score"][i]
  76. labels = rec_res["label"][i]
  77. single_img_res["boxes"].append(
  78. {
  79. "labels": labels,
  80. "cls_scores": cls_scores,
  81. "det_score": obj["score"],
  82. "coordinate": obj["coordinate"],
  83. }
  84. )
  85. return AttributeRecResult(single_img_res)
  86. class PedestrianAttributeRecPipeline(AttributeRecPipeline):
  87. entities = "pedestrian_attribute_recognition"
  88. class VehicleAttributeRecPipeline(AttributeRecPipeline):
  89. entities = "vehicle_attribute_recognition"