| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import cv2
- import copy
- import random
- from PIL import Image
- import paddlex
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- from numbers import Number
- from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
- horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
- crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
- __all__ = [
- "Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
- "RandomResizeByShort", "RandomHorizontalFlip", "RandomVerticalFlip",
- "Normalize", "CenterCrop", "RandomCrop", "RandomExpand", "Padding",
- "MixupImage", "RandomDistort", "ArrangeSegmenter", "ArrangeClassifier",
- "ArrangeDetector"
- ]
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- class Transform(object):
- """
- Parent class of all data augmentation operations
- """
- def __init__(self):
- pass
- def apply_im(self, image):
- pass
- def apply_mask(self, mask):
- pass
- def apply_bbox(self, bbox):
- pass
- def apply_segm(self, segms):
- pass
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'gt_bbox' in sample:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
- return sample
- def __call__(self, sample):
- if isinstance(sample, Sequence):
- sample = [self.apply(s) for s in sample]
- else:
- sample = self.apply(sample)
- return sample
- class Compose(Transform):
- """
- Apply a series of data augmentation to the input.
- All input images are in Height-Width-Channel ([H, W, C]) format.
- Args:
- transforms (List[paddlex.transforms.Transform]): List of data preprocess or augmentations.
- Raises:
- TypeError: Invalid type of transforms.
- ValueError: Invalid length of transforms.
- """
- def __init__(self, transforms):
- super(Compose, self).__init__()
- if not isinstance(transforms, list):
- raise TypeError(
- 'Type of transforms is invalid. Must be List, but received is {}'
- .format(type(transforms)))
- if len(transforms) < 1:
- raise ValueError(
- 'Length of transforms must not be less than 1, but received is {}'
- .format(len(transforms)))
- self.transforms = transforms
- self.decode_image = Decode()
- self.arrange_outputs = None
- self.apply_im_only = False
- def __call__(self, sample):
- if self.apply_im_only and 'mask' in sample:
- mask_backup = copy.deepcopy(sample['mask'])
- del sample['mask']
- sample = self.decode_image(sample)
- for op in self.transforms:
- # skip batch transforms amd mixup
- if isinstance(op, (paddlex.transforms.BatchRandomResize,
- paddlex.transforms.BatchRandomResizeByShort,
- MixupImage)):
- continue
- sample = op(sample)
- if self.arrange_outputs is not None:
- if self.apply_im_only:
- sample['mask'] = mask_backup
- sample = self.arrange_outputs(sample)
- return sample
- class Decode(Transform):
- """
- Decode image(s) in input.
- Args:
- to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
- """
- def __init__(self, to_rgb=True):
- super(Decode, self).__init__()
- self.to_rgb = to_rgb
- def read_img(self, img_path):
- return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
- cv2.IMREAD_COLOR)
- def apply_im(self, im_path):
- if isinstance(im_path, str):
- try:
- image = self.read_img(im_path)
- except:
- raise ValueError('Cannot read the image file {}!'.format(
- im_path))
- else:
- image = im_path
- if self.to_rgb:
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- return image
- def apply_mask(self, mask):
- try:
- mask = np.asarray(Image.open(mask))
- except:
- raise ValueError("Cannot read the mask file {}!".format(mask))
- if len(mask.shape) != 2:
- raise Exception(
- "Mask should be a 1-channel image, but recevied is a {}-channel image.".
- format(mask.shape[2]))
- return mask
- def apply(self, sample):
- """
- Args:
- sample (dict): Input sample, containing 'image' at least.
- Returns:
- dict: Decoded sample.
- """
- sample['image'] = self.apply_im(sample['image'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- im_height, im_width, _ = sample['image'].shape
- se_height, se_width = sample['mask'].shape
- if im_height != se_height or im_width != se_width:
- raise Exception(
- "The height or width of the im is not same as the mask")
- sample['im_shape'] = np.array(
- sample['image'].shape[:2], dtype=np.float32)
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
- return sample
- class Resize(Transform):
- """
- Resize input.
- - If target_size is an int,resize the image(s) to (target_size, target_size).
- - If target_size is a list or tuple, resize the image(s) to target_size.
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
- Args:
- target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
- Otherwise, target_size represents [target height, target width].
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
- Interpolation method of resize. Defaults to 'LINEAR'.
- keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
- than target width/height. Defaults to False.
- Raises:
- TypeError: Invalid type of target_size.
- ValueError: Invalid interpolation method.
- """
- def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
- super(Resize, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("interp should be one of {}".format(
- interp_dict.keys()))
- if isinstance(target_size, int):
- target_size = (target_size, target_size)
- else:
- if not (isinstance(target_size,
- (list, tuple)) and len(target_size) == 2):
- raise TypeError(
- "target_size should be an int or a list of length 2, but received {}".
- format(target_size))
- # (height, width)
- self.target_size = target_size
- self.interp = interp
- self.keep_ratio = keep_ratio
- def apply_im(self, image, interp):
- image = cv2.resize(
- image, (self.target_size[1], self.target_size[0]),
- interpolation=interp)
- return image
- def apply_mask(self, mask):
- mask = cv2.resize(
- mask, (self.target_size[1], self.target_size[0]),
- interpolation=cv2.INTER_NEAREST)
- return mask
- def apply_bbox(self, bbox, scale):
- im_scale_x, im_scale_y = scale
- bbox[:, 0::2] *= im_scale_x
- bbox[:, 1::2] *= im_scale_y
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, self.target_size[1])
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, self.target_size[0])
- return bbox
- def apply_segm(self, segms, im_size, scale):
- im_h, im_w = im_size
- im_scale_x, im_scale_y = scale
- resized_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- resized_segms.append([
- resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
- ])
- else:
- # RLE format
- resized_segms.append(
- resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
- return resized_segms
- def apply(self, sample):
- if self.interp == "RANDOM":
- interp = random.choice(list(interp_dict.values()))
- else:
- interp = interp_dict[self.interp]
- im_h, im_w = sample['image'].shape[:2]
- im_scale_y = self.target_size[0] / im_h
- im_scale_x = self.target_size[1] / im_w
- target_size = list(self.target_size)
- if self.keep_ratio:
- scale = min(im_scale_y, im_scale_x)
- target_w = int(round(im_w * scale))
- target_h = int(round(im_h * scale))
- target_size = [target_w, target_h]
- im_scale_y = target_h / im_h
- im_scale_x = target_w / im_w
- sample['image'] = self.apply_im(sample['image'], interp)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
- [im_scale_x, im_scale_y])
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
- sample['im_shape'] = np.asarray(
- sample['image'].shape[:2], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- return sample
- class RandomResize(Transform):
- """
- Resize input to random sizes.
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
- Args:
- target_sizes (List[int], List[list or tuple] or Tuple[lsit or tuple]):
- Multiple target sizes, each target size is an int or list/tuple.
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
- Interpolation method of resize. Defaults to 'LINEAR'.
- Raises:
- TypeError: Invalid type of target_size.
- ValueError: Invalid interpolation method.
- See Also:
- Resize input to a specific size.
- """
- def __init__(self, target_sizes, interp='LINEAR'):
- super(RandomResize, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("interp should be one of {}".format(
- interp_dict.keys()))
- self.interp = interp
- assert isinstance(target_sizes, list), \
- "target_size must be List"
- for i, item in enumerate(target_sizes):
- if isinstance(item, int):
- target_sizes[i] = (item, item)
- self.target_size = target_sizes
- def apply(self, sample):
- height, width = random.choice(self.target_size)
- resizer = Resize((height, width), interp=self.interp)
- sample = resizer(sample)
- return sample
- class ResizeByShort(Transform):
- """
- Resize input with keeping the aspect ratio.
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
- Args:
- short_size (int): Target size of the shorter side of the image(s).
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
- Raises:
- ValueError: Invalid interpolation method.
- """
- def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("interp should be one of {}".format(
- interp_dict.keys()))
- super(ResizeByShort, self).__init__()
- self.short_size = short_size
- self.max_size = max_size
- self.interp = interp
- def apply_im(self, image, interp, target_size):
- image = cv2.resize(image, target_size, interpolation=interp)
- return image
- def apply_mask(self, mask, target_size):
- mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
- return mask
- def apply_bbox(self, bbox, scale, target_size):
- im_scale_x, im_scale_y = scale
- bbox[:, 0::2] *= im_scale_x
- bbox[:, 1::2] *= im_scale_y
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[1])
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[0])
- return bbox
- def apply_segm(self, segms, im_size, scale):
- im_h, im_w = im_size
- im_scale_x, im_scale_y = scale
- resized_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- resized_segms.append([
- resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
- ])
- else:
- # RLE format
- resized_segms.append(
- resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
- return resized_segms
- def apply(self, sample):
- if self.interp == "RANDOM":
- interp = random.choice(list(interp_dict.values()))
- else:
- interp = interp_dict[self.interp]
- im_h, im_w = sample['image'].shape[:2]
- im_short_size = min(im_h, im_w)
- im_long_size = max(im_h, im_w)
- scale = float(self.short_size) / float(im_short_size)
- if 0 < self.max_size < np.round(scale * im_long_size):
- scale = float(self.max_size) / float(im_long_size)
- target_w = int(round(im_w * scale))
- target_h = int(round(im_h * scale))
- target_size = (target_w, target_h)
- sample['image'] = self.apply_im(sample['image'], interp, target_size)
- im_scale_y = target_h / im_h
- im_scale_x = target_w / im_w
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], target_size)
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
- sample['im_shape'] = np.asarray(
- sample['image'].shape[:2], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- return sample
- class RandomResizeByShort(Transform):
- """
- Resize input to random sizes with keeping the aspect ratio.
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
- Args:
- short_sizes (List[int]): Target size of the shorter side of the image(s).
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
- Raises:
- TypeError: Invalid type of target_size.
- ValueError: Invalid interpolation method.
- See Also:
- ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
- """
- def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
- super(RandomResizeByShort, self).__init__()
- if not (interp == "RANDOM" or interp in interp_dict):
- raise ValueError("interp should be one of {}".format(
- interp_dict.keys()))
- self.interp = interp
- assert isinstance(short_sizes, list), \
- "short_sizes must be List"
- self.short_sizes = short_sizes
- self.max_size = max_size
- def apply(self, sample):
- short_size = random.choice(self.short_sizes)
- resizer = ResizeByShort(
- short_size=short_size, max_size=self.max_size, interp=self.interp)
- sample = resizer(sample)
- return sample
- class RandomHorizontalFlip(Transform):
- """
- Randomly flip the input horizontally.
- Args:
- prob(float, optional): Probability of flipping the input. Defaults to .5.
- """
- def __init__(self, prob=0.5):
- super(RandomHorizontalFlip, self).__init__()
- self.prob = prob
- def apply_im(self, image):
- image = horizontal_flip(image)
- return image
- def apply_mask(self, mask):
- mask = horizontal_flip(mask)
- return mask
- def apply_bbox(self, bbox, width):
- oldx1 = bbox[:, 0].copy()
- oldx2 = bbox[:, 2].copy()
- bbox[:, 0] = width - oldx2
- bbox[:, 2] = width - oldx1
- return bbox
- def apply_segm(self, segms, height, width):
- flipped_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- flipped_segms.append(
- [horizontal_flip_poly(poly, width) for poly in segm])
- else:
- # RLE format
- flipped_segms.append(horizontal_flip_rle(segm, height, width))
- return flipped_segms
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
- im_w)
- return sample
- class RandomVerticalFlip(Transform):
- """
- Randomly flip the input vertically.
- Args:
- prob(float, optional): Probability of flipping the input. Defaults to .5.
- """
- def __init__(self, prob=0.5):
- super(RandomVerticalFlip, self).__init__()
- self.prob = prob
- def apply_im(self, image):
- image = vertical_flip(image)
- return image
- def apply_mask(self, mask):
- mask = vertical_flip(mask)
- return mask
- def apply_bbox(self, bbox, height):
- oldy1 = bbox[:, 1].copy()
- oldy2 = bbox[:, 3].copy()
- bbox[:, 0] = height - oldy2
- bbox[:, 2] = height - oldy1
- return bbox
- def apply_segm(self, segms, height, width):
- flipped_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- flipped_segms.append(
- [vertical_flip_poly(poly, height) for poly in segm])
- else:
- # RLE format
- flipped_segms.append(vertical_flip_rle(segm, height, width))
- return flipped_segms
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
- im_w)
- return sample
- class Normalize(Transform):
- """
- Apply min-max normalization to the image(s) in input.
- 1. im = (im - min_value) * 1 / (max_value - min_value)
- 2. im = im - mean
- 3. im = im / std
- Args:
- mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
- std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
- min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
- max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
- is_scale(bool, optional): If True, the image pixel values will be divided by 255.
- """
- def __init__(self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- min_val=[0, 0, 0],
- max_val=[255., 255., 255.],
- is_scale=True):
- super(Normalize, self).__init__()
- from functools import reduce
- if reduce(lambda x, y: x * y, std) == 0:
- raise ValueError(
- 'Std should not have 0, but received is {}'.format(std))
- if is_scale:
- if reduce(lambda x, y: x * y,
- [a - b for a, b in zip(max_val, min_val)]) == 0:
- raise ValueError(
- '(max_val - min_val) should not have 0, but received is {}'.
- format((np.asarray(max_val) - np.asarray(min_val)).tolist(
- )))
- self.mean = mean
- self.std = std
- self.min_val = min_val
- self.max_val = max_val
- self.is_scale = is_scale
- def apply_im(self, image):
- image = image.astype(np.float32)
- mean = np.asarray(
- self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
- std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
- image = normalize(image, mean, std, self.min_val, self.max_val)
- return image
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- return sample
- class CenterCrop(Transform):
- """
- Crop the input at the center.
- 1. Locate the center of the image.
- 2. Crop the sample.
- Args:
- crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
- """
- def __init__(self, crop_size=224):
- super(CenterCrop, self).__init__()
- self.crop_size = crop_size
- def apply_im(self, image):
- image = center_crop(image, self.crop_size)
- return image
- def apply_mask(self, mask):
- mask = center_crop(mask)
- return mask
- def apply(self, sample):
- sample['image'] = self.apply_im(sample['image'])
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'])
- return sample
- class RandomCrop(Transform):
- """
- Randomly crop the input.
- 1. Compute the height and width of cropped area according to aspect_ratio and scaling.
- 2. Locate the upper left corner of cropped area randomly.
- 3. Crop the image(s).
- 4. Resize the cropped area to crop_size by crop_size.
- Args:
- crop_size(int or None, optional): Target size of the cropped area. If None, the cropped area will not be resized. Defaults to None.
- aspect_ratio (List[float], optional): Aspect ratio of cropped region.
- in [min, max] format. Defaults to [.5, .2].
- thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop. Defaults to [.0, .1, .3, .5, .7, .9].
- scaling (List[float], optional): Ratio between the cropped region and the original image.
- in [min, max] format, default [.3, 1.].
- num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
- allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
- cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
- """
- def __init__(self,
- crop_size=None,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False):
- super(RandomCrop, self).__init__()
- self.crop_size = crop_size
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- def _generate_crop_info(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- thresholds = self.thresholds
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return None
- for i in range(self.num_attempts):
- crop_box = self._get_crop_box(im_h, im_w)
- if crop_box is None:
- continue
- iou = self._iou_matrix(
- sample['gt_bbox'],
- np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
- sample['gt_bbox'],
- np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- return crop_box, cropped_box, valid_ids
- else:
- for i in range(self.num_attempts):
- crop_box = self._get_crop_box(im_h, im_w)
- if crop_box is None:
- continue
- return crop_box, None, None
- return None
- def _get_crop_box(self, im_h, im_w):
- scale = np.random.uniform(*self.scaling)
- if self.aspect_ratio is not None:
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- h_scale = scale / np.sqrt(aspect_ratio)
- w_scale = scale * np.sqrt(aspect_ratio)
- else:
- h_scale = np.random.uniform(*self.scaling)
- w_scale = np.random.uniform(*self.scaling)
- crop_h = im_h * h_scale
- crop_w = im_w * w_scale
- if self.aspect_ratio is None:
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
- return None
- crop_h = int(crop_h)
- crop_w = int(crop_w)
- crop_y = np.random.randint(0, im_h - crop_h)
- crop_x = np.random.randint(0, im_w - crop_w)
- return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- def _iou_matrix(self, a, b):
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
- return area_i / (area_o + 1e-10)
- def _crop_box_with_center_constraint(self, box, crop):
- cropped_box = box.copy()
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
- cropped_box[:, :2] -= crop[:2]
- cropped_box[:, 2:] -= crop[:2]
- centers = (box[:, :2] + box[:, 2:]) / 2
- valid = np.logical_and(crop[:2] <= centers,
- centers < crop[2:]).all(axis=1)
- valid = np.logical_and(
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
- return cropped_box, np.where(valid)[0]
- def _crop_segm(self, segms, valid_ids, crop, height, width):
- crop_segms = []
- for id in valid_ids:
- segm = segms[id]
- if is_poly(segm):
- # Polygon format
- crop_segms.append(crop_poly(segm, crop))
- else:
- # RLE format
- crop_segms.append(crop_rle(segm, crop, height, width))
- return crop_segms
- def apply_im(self, image, crop):
- x1, y1, x2, y2 = crop
- return image[y1:y2, x1:x2, :]
- def apply_mask(self, mask, crop):
- x1, y1, x2, y2 = crop
- return mask[y1:y2, x1:x2, :]
- def apply(self, sample):
- crop_info = self._generate_crop_info(sample)
- if crop_info is not None:
- crop_box, cropped_box, valid_ids = crop_info
- im_h, im_w = sample['image'].shape[:2]
- sample['image'] = self.apply_im(sample['image'], crop_box)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- crop_polys = self._crop_segm(
- sample['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- im_h,
- im_w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for idx, poly in enumerate(crop_polys):
- if not crop_poly:
- delete_id.append(idx)
- else:
- valid_polys.append(poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if not valid_polys:
- return sample
- sample['gt_poly'] = valid_polys
- else:
- sample['gt_poly'] = crop_polys
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- sample['gt_class'] = np.take(
- sample['gt_class'], valid_ids, axis=0)
- if 'gt_score' in sample:
- sample['gt_score'] = np.take(
- sample['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in sample:
- sample['is_crowd'] = np.take(
- sample['is_crowd'], valid_ids, axis=0)
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], crop_box)
- if self.crop_size is not None:
- sample = Resize((self.crop_size, self.crop_size))(sample)
- return sample
- class RandomExpand(Transform):
- """
- Randomly expand the input by padding to the lower right side of the image(s) in input.
- Args:
- upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
- prob(float, optional): The probability of apply expanding. Defaults to .5.
- im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
- """
- def __init__(self,
- upper_ratio=4.,
- prob=.5,
- im_padding_value=(127.5, 127.5, 127.5),
- label_padding_value=255):
- super(RandomExpand, self).__init__()
- assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
- self.upper_ratio = upper_ratio
- self.prob = prob
- assert isinstance(im_padding_value, (Number, Sequence)), \
- "fill value must be either float or sequence"
- if isinstance(im_padding_value, Number):
- im_padding_value = (im_padding_value, ) * 3
- if not isinstance(im_padding_value, tuple):
- im_padding_value = tuple(im_padding_value)
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def apply(self, sample):
- if random.random() < self.prob:
- im_h, im_w = sample['image'].shape[:2]
- ratio = np.random.uniform(1., self.upper_ratio)
- h = int(im_h * ratio)
- w = int(im_w * ratio)
- if h > im_h and w > im_w:
- y = np.random.randint(0, h - im_h)
- x = np.random.randint(0, w - im_w)
- target_size = (h, w)
- offsets = (x, y)
- sample = Padding(
- target_size=target_size,
- pad_mode=-1,
- offsets=offsets,
- im_padding_value=self.im_padding_value,
- label_padding_value=self.label_padding_value)(sample)
- return sample
- class Padding(Transform):
- def __init__(self,
- target_size=None,
- pad_mode=0,
- offsets=None,
- im_padding_value=(127.5, 127.5, 127.5),
- label_padding_value=255,
- size_divisor=32):
- """
- Pad image to a specified size or multiple of size_divisor.
- Args:
- target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
- pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
- if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
- im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
- size_divisor(int): Image width and height after padding is a multiple of size_divisor
- """
- super(Padding, self).__init__()
- if isinstance(target_size, (list, tuple)):
- if len(target_size) != 2:
- raise ValueError(
- '`target_size` should include 2 elements, but it is {}'.
- format(target_size))
- if isinstance(target_size, int):
- target_size = [target_size] * 2
- assert pad_mode in [
- -1, 0, 1, 2
- ], 'currently only supports four modes [-1, 0, 1, 2]'
- if pad_mode == -1:
- assert offsets, 'if pad_mode is -1, offsets should not be None'
- self.target_size = target_size
- self.size_divisor = size_divisor
- self.pad_mode = pad_mode
- self.offsets = offsets
- self.im_padding_value = im_padding_value
- self.label_padding_value = label_padding_value
- def apply_im(self, image, offsets, target_size):
- x, y = offsets
- im_h, im_w = image.shape[:2]
- h, w = target_size
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.im_padding_value, dtype=np.float32)
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
- return canvas
- def apply_mask(self, mask, offsets, target_size):
- x, y = offsets
- im_h, im_w = mask.shape[:2]
- h, w = target_size
- canvas = np.ones((h, w), dtype=np.float32)
- canvas *= np.array(self.label_padding_value, dtype=np.float32)
- canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
- return canvas
- def apply_bbox(self, bbox, offsets):
- return bbox + np.array(offsets * 2, dtype=np.float32)
- def apply_segm(self, segms, offsets, im_size, size):
- x, y = offsets
- height, width = im_size
- h, w = size
- expanded_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- expanded_segms.append(
- [expand_poly(poly, x, y) for poly in segm])
- else:
- # RLE format
- expanded_segms.append(
- expand_rle(segm, x, y, height, width, h, w))
- return expanded_segms
- def apply(self, sample):
- im_h, im_w = sample['image'].shape[:2]
- if self.target_size:
- h, w = self.target_size
- assert (
- im_h <= h and im_w <= w
- ), 'target size ({}, {}) cannot be less than image size ({}, {})'\
- .format(h, w, im_h, im_w)
- else:
- h = (np.ceil(im_h // self.size_divisor) *
- self.size_divisor).astype(int)
- w = (np.ceil(im_w / self.size_divisor) *
- self.size_divisor).astype(int)
- if h == im_h and w == im_w:
- return sample
- if self.pad_mode == -1:
- offsets = self.offsets
- elif self.pad_mode == 0:
- offsets = [0, 0]
- elif self.pad_mode == 1:
- offsets = [(h - im_h) // 2, (w - im_w) // 2]
- else:
- offsets = [h - im_h, w - im_w]
- sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
- if 'mask' in sample:
- sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(
- sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
- return sample
- class MixupImage(Transform):
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- """
- Mixup two images and their gt_bbbox/gt_score.
- Args:
- alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
- beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
- """
- super(MixupImage, self).__init__()
- if alpha <= 0.0:
- raise ValueError("alpha should be positive in {}".format(self))
- if beta <= 0.0:
- raise ValueError("beta should be positive in {}".format(self))
- self.alpha = alpha
- self.beta = beta
- self.mixup_epoch = mixup_epoch
- def apply_im(self, image1, image2, factor):
- h = max(image1.shape[0], image2.shape[0])
- w = max(image1.shape[1], image2.shape[1])
- img = np.zeros((h, w, image1.shape[2]), 'float32')
- img[:image1.shape[0], :image1.shape[1], :] = \
- image1.astype('float32') * factor
- img[:image2.shape[0], :image2.shape[1], :] += \
- image2.astype('float32') * (1.0 - factor)
- return img.astype('uint8')
- def __call__(self, sample):
- if not isinstance(sample, Sequence):
- return sample
- assert len(sample) == 2, 'mixup need two samples'
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if factor >= 1.0:
- return sample[0]
- if factor <= 0.0:
- return sample[1]
- image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
- result = copy.deepcopy(sample[0])
- result['image'] = image
- # apply bbox and score
- if 'gt_bbox' in sample[0]:
- gt_bbox1 = sample[0]['gt_bbox']
- gt_bbox2 = sample[1]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- result['gt_bbox'] = gt_bbox
- if 'gt_poly' in sample[0]:
- gt_poly1 = sample[0]['gt_poly']
- gt_poly2 = sample[1]['gt_poly']
- gt_poly = gt_poly1 + gt_poly2
- result['gt_poly'] = gt_poly
- if 'gt_class' in sample[0]:
- gt_class1 = sample[0]['gt_class']
- gt_class2 = sample[1]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- result['gt_class'] = gt_class
- gt_score1 = np.ones_like(sample[0]['gt_class'])
- gt_score2 = np.ones_like(sample[1]['gt_class'])
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- result['gt_score'] = gt_score
- if 'is_crowd' in sample[0]:
- is_crowd1 = sample[0]['is_crowd']
- is_crowd2 = sample[1]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- result['is_crowd'] = is_crowd
- if 'difficult' in sample[0]:
- is_difficult1 = sample[0]['difficult']
- is_difficult2 = sample[1]['difficult']
- is_difficult = np.concatenate(
- (is_difficult1, is_difficult2), axis=0)
- result['difficult'] = is_difficult
- return result
- class RandomDistort(Transform):
- """
- Random color distortion.
- Args:
- brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
- brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
- contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
- contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
- saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
- saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
- hue_range(float, optional): Range of hue distortion. Defaults to .5.
- hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
- random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
- order. Defaults to True.
- count (int, optional): the number of doing distortion. Defaults to 4.
- shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5,
- random_apply=True,
- count=4,
- shuffle_channel=False):
- super(RandomDistort, self).__init__()
- self.brightness_range = [1 - brightness_range, 1 + brightness_range]
- self.brightness_prob = brightness_prob
- self.contrast_range = [1 - contrast_range, 1 + contrast_range]
- self.contrast_prob = contrast_prob
- self.saturation_range = [1 - saturation_range, 1 + saturation_range]
- self.saturation_prob = saturation_prob
- self.hue_range = [1 - hue_range, 1 + hue_range]
- self.hue_prob = hue_prob
- self.random_apply = random_apply
- self.count = count
- self.shuffle_channel = shuffle_channel
- def apply_hue(self, image):
- low, high = self.hue_range
- if np.random.uniform(0., 1.) < self.hue_prob:
- return image
- image = image.astype(np.float32)
- # it works, but result differ from HSV version
- delta = np.random.uniform(low, high)
- u = np.cos(delta * np.pi)
- w = np.sin(delta * np.pi)
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
- [0.211, -0.523, 0.311]])
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
- [1.0, -1.107, 1.705]])
- t = np.dot(np.dot(ityiq, bt), tyiq).T
- image = np.dot(image, t)
- return image
- def apply_saturation(self, image):
- low, high = self.saturation_range
- if np.random.uniform(0., 1.) < self.saturation_prob:
- return image
- delta = np.random.uniform(low, high)
- image = image.astype(np.float32)
- # it works, but result differ from HSV version
- gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
- gray = gray.sum(axis=2, keepdims=True)
- gray *= (1.0 - delta)
- image *= delta
- image += gray
- return image
- def apply_contrast(self, image):
- low, high = self.contrast_range
- if np.random.uniform(0., 1.) < self.contrast_prob:
- return image
- delta = np.random.uniform(low, high)
- image = image.astype(np.float32)
- image *= delta
- return image
- def apply_brightness(self, image):
- low, high = self.brightness_range
- if np.random.uniform(0., 1.) < self.brightness_prob:
- return image
- delta = np.random.uniform(low, high)
- image = image.astype(np.float32)
- image += delta
- return image
- def apply(self, sample):
- if self.random_apply:
- functions = [
- self.apply_brightness, self.apply_contrast,
- self.apply_saturation, self.apply_hue
- ]
- distortions = np.random.permutation(functions)[:self.count]
- for func in distortions:
- sample['image'] = func(sample['image'])
- return sample
- sample['image'] = self.apply_brightness(sample['image'])
- mode = np.random.randint(0, 2)
- if mode:
- sample['image'] = self.apply_contrast(sample['image'])
- sample['image'] = self.apply_saturation(sample['image'])
- sample['image'] = self.apply_hue(sample['image'])
- if not mode:
- sample['image'] = self.apply_contrast(sample['image'])
- if self.shuffle_channel:
- if np.random.randint(0, 2):
- sample['image'] = sample['image'][..., np.random.permutation(
- 3)]
- return sample
- class _PadBox(Transform):
- def __init__(self, num_max_boxes=50):
- """
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
- Args:
- num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
- """
- self.num_max_boxes = num_max_boxes
- super(_PadBox, self).__init__()
- def apply(self, sample):
- gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
- num_max = self.num_max_boxes
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
- if gt_num > 0:
- pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
- sample['gt_bbox'] = pad_bbox
- if 'gt_class' in sample:
- pad_class = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
- sample['gt_class'] = pad_class
- if 'gt_score' in sample:
- pad_score = np.zeros((num_max, ), dtype=np.float32)
- if gt_num > 0:
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
- sample['gt_score'] = pad_score
- # in training, for example in op ExpandImage,
- # the bbox and gt_class is expanded, but the difficult is not,
- # so, judging by it's length
- if 'difficult' in sample:
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
- sample['difficult'] = pad_diff
- if 'is_crowd' in sample:
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
- sample['is_crowd'] = pad_crowd
- return sample
- class _NormalizeBox(Transform):
- def __init__(self):
- super(_NormalizeBox, self).__init__()
- def apply(self, sample):
- height, width = sample['image'].shape[:2]
- for i in range(sample['gt_bbox'].shape[0]):
- sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
- sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
- sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
- sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
- return sample
- class _BboxXYXY2XYWH(Transform):
- """
- Convert bbox XYXY format to XYWH format.
- """
- def __init__(self):
- super(_BboxXYXY2XYWH, self).__init__()
- def apply(self, sample):
- bbox = sample['gt_bbox']
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
- sample['gt_bbox'] = bbox
- return sample
- class _Permute(Transform):
- def __init__(self):
- super(_Permute, self).__init__()
- def apply(self, sample):
- sample['image'] = permute(sample['image'], False)
- return sample
- class ArrangeSegmenter(Transform):
- def __init__(self, mode):
- super(ArrangeSegmenter, self).__init__()
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
- )
- self.mode = mode
- def apply(self, sample):
- if 'mask' in sample:
- mask = sample['mask']
- image = permute(sample['image'], False)
- if self.mode == 'train':
- mask = mask.astype('int64')
- return image, mask
- if self.mode == 'eval':
- mask = np.asarray(Image.open(mask))
- mask = mask[np.newaxis, :, :].astype('int64')
- return image, mask
- if self.mode == 'test':
- return image,
- class ArrangeClassifier(Transform):
- def __init__(self, mode):
- super(ArrangeClassifier, self).__init__()
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
- )
- self.mode = mode
- def apply(self, sample):
- image = permute(sample['image'], False)
- if self.mode in ['train', 'eval']:
- return image, sample['label']
- else:
- return image
- class ArrangeDetector(Transform):
- def __init__(self, mode):
- super(ArrangeDetector, self).__init__()
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
- )
- self.mode = mode
- def apply(self, sample):
- if self.mode == 'eval' and 'gt_poly' in sample:
- del sample['gt_poly']
- return sample
|