pipeline.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import numpy as np
  16. from ...common.reader import ReadImage
  17. from ...common.batch_sampler import ImageBatchSampler
  18. from ...utils.pp_option import PaddlePredictorOption
  19. from ..base import BasePipeline
  20. from ...models_new.image_classification.result import TopkResult
  21. from ...results import TopkResult
  22. class ImageClassificationPipeline(BasePipeline):
  23. """Image Classification Pipeline"""
  24. entities = "image_classification"
  25. def __init__(
  26. self,
  27. config: Dict,
  28. device: str = None,
  29. pp_option: PaddlePredictorOption = None,
  30. use_hpip: bool = False,
  31. hpi_params: Optional[Dict[str, Any]] = None,
  32. ) -> None:
  33. """
  34. Initializes the class with given configurations and options.
  35. Args:
  36. config (Dict): Configuration dictionary containing model and other parameters.
  37. device (str): The device to run the prediction on. Default is None.
  38. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  39. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  40. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
  41. """
  42. super().__init__(
  43. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  44. )
  45. image_classification_model_config = config["SubModules"]["ImageClassification"]
  46. self.image_classification_model = self.create_model(
  47. image_classification_model_config
  48. )
  49. batch_size = image_classification_model_config["batch_size"]
  50. self.batch_sampler = ImageBatchSampler(batch_size=batch_size)
  51. self.img_reader = ReadImage(format="BGR")
  52. def predict(
  53. self, input: str | list[str] | np.ndarray | list[np.ndarray], **kwargs
  54. ) -> TopkResult:
  55. """Predicts image classification results for the given input.
  56. Args:
  57. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  58. **kwargs: Additional keyword arguments that can be passed to the function.
  59. Returns:
  60. TopkResult: The predicted top k results.
  61. """
  62. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  63. batch_imgs = self.img_reader(batch_data)
  64. for topk_single_result in self.image_classification_model(batch_imgs):
  65. yield topk_single_result