开放词汇分割是一项图像分割任务,旨在根据文本描述、边框、关键点等除图像以外的信息作为提示,分割图像中对应的物体。它允许模型处理广泛的对象类别,而无需预定义的类别列表。这项技术结合了视觉和多模态技术,极大地提高了图像处理的灵活性和精度。开放词汇分割在计算机视觉领域具有重要应用价值,尤其在复杂场景下的对象分割任务中表现突出。本产线同时提供了灵活的服务化部署方式,支持在多种硬件上使用多种编程语言调用。本产线目前不支持对模型的二次开发,计划在后续支持。
通用开放词汇分割产线中包含了开放词汇分割模块,您可以根据下方的基准测试数据选择使用的模型。
如果您更注重模型的精度,请选择精度较高的模型;如果您更在意模型的推理速度,请选择推理速度较快的模型;如果您关注模型的存储大小,请选择存储体积较小的模型。
通用图像开放词汇分割模块(可选):
| 模型 | 模型下载链接 | GPU推理耗时(ms) | CPU推理耗时 (ms) | 模型存储大小(M) | 介绍 |
|---|---|---|---|---|---|
| SAM-H_box | 推理模型 | 144.9 | 33920.7 | 2433.7 | SAM(Segment Anything Model)是一种先进的图像分割模型,能够根据用户提供的简单提示(如点、框或文本)对图像中的任意对象进行分割。基于SA-1B数据集训练,有一千万的图像数据和十一亿掩码标注,在大部分场景均有较好的效果。其中SAM-H_box表示使用框作为分割提示输入,SAM会分割被框包裹主的主体;SAM-H_point表示使用点作为分割提示输入,SAM会分割点所在的主体。 |
| SAM-H_point | 推理模型 | 144.9 | 33920.7 | 2433.7 |
注:所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。
❗ 在本地使用通用开放词汇分割产线前,请确保您已经按照PaddleX本地安装教程完成了PaddleX的wheel包安装。
一行命令即可快速体验开放词汇分割产线效果,使用 测试文件,并将 --input 替换为本地路径,进行预测
paddlex --pipeline open_vocabulary_segmentation \
--input open_vocabulary_segmentation.jpg \
--prompt_type box \
--prompt "[[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]]" \
--save_path ./output \
--device gpu:0
相关的参数说明可以参考2.1.2 Python脚本方式集成中的参数说明。
运行后,会将结果打印到终端上,结果如下:
{'res': {'input_path': 'open_vocabulary_segmentation.jpg', 'prompts': {'box_prompt': [[112.9, 118.4, 513.8, 382.1], [4.6, 263.6, 92.2, 336.6], [592.4, 260.9, 607.2, 294.2]]}, 'masks': '...', 'mask_infos': [{'label': 'box_prompt', 'prompt': [112.9, 118.4, 513.8, 382.1]}, {'label': 'box_prompt', 'prompt': [4.6, 263.6, 92.2, 336.6]}, {'label': 'box_prompt', 'prompt': [592.4, 260.9, 607.2, 294.2]}]}}
运行结果参数说明可以参考2.1.2 Python脚本方式集成中的结果解释。
可视化结果保存在save_path下,其中开放词汇分割的可视化结果如下:
上述命令行是为了快速体验查看效果,一般来说,在项目中,往往需要通过代码集成,您可以通过几行代码即可完成产线的快速推理,推理代码如下:
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="open_vocabulary_segmentation")
output = pipeline.predict(input="open_vocabulary_segmentation.jpg", prompt_type="box", prompt=[[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]])
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
在上述 Python 脚本中,执行了如下几个步骤:
(1)通过 create_pipeline() 实例化 开放词汇分割 产线对象,具体参数说明如下:
| 参数 | 参数说明 | 参数类型 | 默认值 |
|---|---|---|---|
pipeline |
产线名称或是产线配置文件路径。如为产线名称,则必须为 PaddleX 所支持的产线。 | str |
None |
config |
产线具体的配置信息(如果和pipeline同时设置,优先级高于pipeline,且要求产线名和pipeline一致)。 |
dict[str, Any] |
None |
device |
产线推理设备。支持指定GPU具体卡号,如“gpu:0”,其他硬件具体卡号,如“npu:0”,CPU如“cpu”。 | str |
None |
use_hpip |
是否启用高性能推理,仅当该产线支持高性能推理时可用。 | bool |
False |
(2)调用 开放词汇分割 产线对象的 predict() 方法进行推理预测。该方法将返回一个 generator。以下是 predict() 方法的参数及其说明:
| 参数 | 参数说明 | 参数类型 | 可选项 | 默认值 |
|---|---|---|---|---|
input |
待预测数据,支持多种输入类型,必填 | Python Var|str|list |
|
None |
device |
产线推理设备 | str|None |
|
None |
prompt_type |
模型推理时使用的提示类型 | str |
|
无promptlist[list[float]]prompt_type的具体类型设置
无(3)对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为json文件的操作:
| 方法 | 方法说明 | 参数 | 参数类型 | 参数说明 | 默认值 |
|---|---|---|---|---|---|
print() |
打印结果到终端 | format_json |
bool |
是否对输出内容进行使用 JSON 缩进格式化 |
True |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
||
save_to_json() |
将结果保存为json格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
||
save_to_img() |
将结果保存为图像格式的文件 | save_path |
str |
保存的文件路径,支持目录或文件路径 | 无 |
调用print() 方法会将结果打印到终端,打印到终端的内容解释如下:
input_path: (str) 待预测图像的输入路径
page_index: (Union[int, None]) 如果输入是PDF文件,则表示当前是PDF的第几页,否则为 None
prompts: (dict) 该图片预测时使用的原始提示信息
masks: ... 分割模型实际预测的mask,由于数据过大不便于直接print,因此用...替换,可以通过res.save_to_img将预测结果保存为图片,通过res.save_to_json将预测结果保存为json文件。
mask_infos: (list) 分割结果信息,对应masks中的元素,长度和masks相等,每个元素为一个字典,包含以下字段
label: (str) 对应的masks中元素由哪种类型的prompt预测获得, 如box_prompt表示对应的mask由边界框作为提示词获得prompt: list 对应的masks中元素预测时具体使用的提示信息调用save_to_json() 方法会将上述内容保存到指定的save_path中,如果指定为目录,则保存的路径为save_path/{your_img_basename}_res.json,如果指定为文件,则直接保存到该文件中。由于json文件不支持保存numpy数组,因此会将其中的numpy.array类型转换为列表形式。
调用save_to_img() 方法会将可视化结果保存到指定的save_path中,如果指定为目录,则保存的路径为save_path/{your_img_basename}_res.{your_img_extension},如果指定为文件,则直接保存到该文件中。
此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
| 属性 | 属性说明 |
|---|---|
json |
获取预测的 json 格式的结果 |
img |
获取格式为 dict 的可视化图像 |
json 属性获取的预测结果为dict类型的数据,相关内容与调用 save_to_json() 方法保存的内容一致。img 属性返回的预测结果是一个字典类型的数据。其中,键为 res, 对应的值是一个 Image.Image 对象:一个用于显示 开放词汇分割 的预测结果。此外,您可以获取 开放词汇分割 产线配置文件,并加载配置文件进行预测。可执行如下命令将结果保存在 my_path 中:
paddlex --get_pipeline_config open_vocabulary_segmentation --save_path ./my_path
若您获取了配置文件,即可对开放词汇分割产线各项配置进行自定义,只需要修改 create_pipeline 方法中的 pipeline 参数值为产线配置文件路径即可。示例如下:
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="./my_path/open_vocabulary_segmentation.yaml")
output = pipeline.predict(
input="./open_vocabulary_segmentation.jpg",
prompt_type="box",
prompt=[[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]]
)
for res in output:
res.print()
res.save_to_img("./output/")
res.save_to_json("./output/")
注: 配置文件中的参数为产线初始化参数,如果希望更改通用开放词汇分割产线初始化参数,可以直接修改配置文件中的参数,并加载配置文件进行预测。同时,CLI 预测也支持传入配置文件,--pipeline 指定配置文件的路径即可。
如果产线可以达到您对产线推理速度和精度的要求,您可以直接进行开发集成/部署。
若您需要将产线直接应用在您的Python项目中,可以参考 2.1.2 Python脚本方式中的示例代码。
此外,PaddleX 也提供了其他三种部署方式,详细说明如下:
🚀 高性能推理:在实际生产环境中,许多应用对部署策略的性能指标(尤其是响应速度)有着较严苛的标准,以确保系统的高效运行与用户体验的流畅性。为此,PaddleX 提供高性能推理插件,旨在对模型推理及前后处理进行深度性能优化,实现端到端流程的显著提速,详细的高性能推理流程请参考PaddleX高性能推理指南。
☁️ 服务化部署:服务化部署是实际生产环境中常见的一种部署形式。通过将推理功能封装为服务,客户端可以通过网络请求来访问这些服务,以获取推理结果。PaddleX 支持多种产线服务化部署方案,详细的产线服务化部署流程请参考PaddleX服务化部署指南。
以下是基础服务化部署的API参考与多语言服务调用示例:
对于服务提供的主要操作:
200,响应体的属性如下:| 名称 | 类型 | 含义 |
|---|---|---|
logId |
string |
请求的UUID。 |
errorCode |
integer |
错误码。固定为0。 |
errorMsg |
string |
错误说明。固定为"Success"。 |
result |
object |
操作结果。 |
| 名称 | 类型 | 含义 |
|---|---|---|
logId |
string |
请求的UUID。 |
errorCode |
integer |
错误码。与响应状态码相同。 |
errorMsg |
string |
错误说明。 |
服务提供的主要操作如下:
infer对图像进行目标分割。
POST /open-vocabulary-segmentation
| 名称 | 类型 | 含义 | 是否必填 |
|---|---|---|---|
image |
string |
服务器可访问的图像文件的URL或图像文件内容的Base64编码结果。 | 是 |
prompt |
list[list[float]] |
预测使用的提示。 | 是 |
prompt_type |
str |
预测使用的提示类型。 | 是 |
result具有如下属性:| 名称 | 类型 | 含义 |
|---|---|---|
masks |
array |
分割的预测结果。 |
mask_infos |
array |
和masks字段中的元素一一对应,记录masks中对应分割结果所使用的对应prompt。 |
image |
string |
分割结果图。图像为JPEG格式,使用Base64编码。 |
rle编码结果, 实际使用时需要使用pycocotools.mask.decode做对应的解码即可获得原始的分割结果。
result示例如下:
{
'masks': [rle_mask1, rle_mask2, rle_mask3]
'mask_infos': [
{'label': 'box_prompt', 'prompt': [112.9, 118.4, 513.8, 382.1]},
{'label': 'box_prompt', 'prompt': [4.6, 263.6, 92.2, 336.6]},
{'label': 'box_prompt', 'prompt': [592.4, 260.9, 607.2, 294.2]}
]
}
import base64
import requests
API_URL = "http://localhost:8080/open-vocabulary-segmentation" # 服务URL
image_path = "./open_vocabulary_segmentation.jpg"
output_image_path = "./out.jpg"
# 对本地图像进行Base64编码
with open(image_path, "rb") as file:
image_bytes = file.read()
image_data = base64.b64encode(image_bytes).decode("ascii")
payload = {
"image": image_data, # Base64编码的文件内容或者图像URL
"prompt_type": "box",
"prompt": [[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]]
}
# 调用API
response = requests.post(API_URL, json=payload)
# 处理接口返回数据
assert response.status_code == 200
result = response.json()["result"]
image_base64 = result["image"]
image = base64.b64decode(image_base64)
with open(output_image_path, "wb") as file:
file.write(base64.b64decode(result["image"]))
print(f"Output image saved at {output_image_path}")
print("\nresult(with rle encoded binary mask):")
print(result)
#include <iostream>
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
#include "base64.hpp" // https://github.com/tobiaslocker/base64
int main() {
httplib::Client client("localhost:8080");
const std::string imagePath = "./demo.jpg";
const std::string outputImagePath = "./out.jpg";
httplib::Headers headers = {
{"Content-Type", "application/json"}
};
// 对本地图像进行Base64编码
std::ifstream file(imagePath, std::ios::binary | std::ios::ate);
std::streamsize size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<char> buffer(size);
if (!file.read(buffer.data(), size)) {
std::cerr << "Error reading file." << std::endl;
return 1;
}
std::string bufferStr(reinterpret_cast<const char*>(buffer.data()), buffer.size());
std::string encodedImage = base64::to_base64(bufferStr);
nlohmann::json jsonObj;
jsonObj["image"] = encodedImage;
std::string body = jsonObj.dump();
// 调用API
auto response = client.Post("/small-object-segmentation", headers, body, "application/json");
// 处理接口返回数据
if (response && response->status == 200) {
nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
auto result = jsonResponse["result"];
encodedImage = result["image"];
std::string decodedString = base64::from_base64(encodedImage);
std::vector<unsigned char> decodedImage(decodedString.begin(), decodedString.end());
std::ofstream outputImage(outPutImagePath, std::ios::binary | std::ios::out);
if (outputImage.is_open()) {
outputImage.write(reinterpret_cast<char*>(decodedImage.data()), decodedImage.size());
outputImage.close();
std::cout << "Output image saved at " << outPutImagePath << std::endl;
} else {
std::cerr << "Unable to open file for writing: " << outPutImagePath << std::endl;
}
auto detectedObjects = result["detectedObjects"];
std::cout << "\nDetected objects:" << std::endl;
for (const auto& category : detectedObjects) {
std::cout << category << std::endl;
}
} else {
std::cout << "Failed to send HTTP request." << std::endl;
return 1;
}
return 0;
}
import okhttp3.*;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Base64;
public class Main {
public static void main(String[] args) throws IOException {
String API_URL = "http://localhost:8080/small-object-segmentation"; // 服务URL
String imagePath = "./demo.jpg"; // 本地图像
String outputImagePath = "./out.jpg"; // 输出图像
// 对本地图像进行Base64编码
File file = new File(imagePath);
byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
String imageData = Base64.getEncoder().encodeToString(fileContent);
ObjectMapper objectMapper = new ObjectMapper();
ObjectNode params = objectMapper.createObjectNode();
params.put("image", imageData); // Base64编码的文件内容或者图像URL
// 创建 OkHttpClient 实例
OkHttpClient client = new OkHttpClient();
MediaType JSON = MediaType.Companion.get("application/json; charset=utf-8");
RequestBody body = RequestBody.Companion.create(params.toString(), JSON);
Request request = new Request.Builder()
.url(API_URL)
.post(body)
.build();
// 调用API并处理接口返回数据
try (Response response = client.newCall(request).execute()) {
if (response.isSuccessful()) {
String responseBody = response.body().string();
JsonNode resultNode = objectMapper.readTree(responseBody);
JsonNode result = resultNode.get("result");
String base64Image = result.get("image").asText();
JsonNode detectedObjects = result.get("detectedObjects");
byte[] imageBytes = Base64.getDecoder().decode(base64Image);
try (FileOutputStream fos = new FileOutputStream(outputImagePath)) {
fos.write(imageBytes);
}
System.out.println("Output image saved at " + outputImagePath);
System.out.println("\nDetected objects: " + detectedObjects.toString());
} else {
System.err.println("Request failed with code: " + response.code());
}
}
}
}
package main
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
)
func main() {
API_URL := "http://localhost:8080/small-object-segmentation"
imagePath := "./demo.jpg"
outputImagePath := "./out.jpg"
// 对本地图像进行Base64编码
imageBytes, err := ioutil.ReadFile(imagePath)
if err != nil {
fmt.Println("Error reading image file:", err)
return
}
imageData := base64.StdEncoding.EncodeToString(imageBytes)
payload := map[string]string{"image": imageData} // Base64编码的文件内容或者图像URL
payloadBytes, err := json.Marshal(payload)
if err != nil {
fmt.Println("Error marshaling payload:", err)
return
}
// 调用API
client := &http.Client{}
req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
if err != nil {
fmt.Println("Error creating request:", err)
return
}
res, err := client.Do(req)
if err != nil {
fmt.Println("Error sending request:", err)
return
}
defer res.Body.Close()
// 处理接口返回数据
body, err := ioutil.ReadAll(res.Body)
if err != nil {
fmt.Println("Error reading response body:", err)
return
}
type Response struct {
Result struct {
Image string `json:"image"`
DetectedObjects []map[string]interface{} `json:"detectedObjects"`
} `json:"result"`
}
var respData Response
err = json.Unmarshal([]byte(string(body)), &respData)
if err != nil {
fmt.Println("Error unmarshaling response body:", err)
return
}
outputImageData, err := base64.StdEncoding.DecodeString(respData.Result.Image)
if err != nil {
fmt.Println("Error decoding base64 image data:", err)
return
}
err = ioutil.WriteFile(outputImagePath, outputImageData, 0644)
if err != nil {
fmt.Println("Error writing image to file:", err)
return
}
fmt.Printf("Image saved at %s.jpg\n", outputImagePath)
fmt.Println("\nDetected objects:")
for _, category := range respData.Result.DetectedObjects {
fmt.Println(category)
}
}
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;
class Program
{
static readonly string API_URL = "http://localhost:8080/small-object-segmentation";
static readonly string imagePath = "./demo.jpg";
static readonly string outputImagePath = "./out.jpg";
static async Task Main(string[] args)
{
var httpClient = new HttpClient();
// 对本地图像进行Base64编码
byte[] imageBytes = File.ReadAllBytes(imagePath);
string image_data = Convert.ToBase64String(imageBytes);
var payload = new JObject{ { "image", image_data } }; // Base64编码的文件内容或者图像URL
var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");
// 调用API
HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
response.EnsureSuccessStatusCode();
// 处理接口返回数据
string responseBody = await response.Content.ReadAsStringAsync();
JObject jsonResponse = JObject.Parse(responseBody);
string base64Image = jsonResponse["result"]["image"].ToString();
byte[] outputImageBytes = Convert.FromBase64String(base64Image);
File.WriteAllBytes(outputImagePath, outputImageBytes);
Console.WriteLine($"Output image saved at {outputImagePath}");
Console.WriteLine("\nDetected objects:");
Console.WriteLine(jsonResponse["result"]["detectedObjects"].ToString());
}
}
const axios = require('axios');
const fs = require('fs');
const API_URL = 'http://localhost:8080/small-object-segmentation'
const imagePath = './demo.jpg'
const outputImagePath = "./out.jpg";
let config = {
method: 'POST',
maxBodyLength: Infinity,
url: API_URL,
data: JSON.stringify({
'image': encodeImageToBase64(imagePath) // Base64编码的文件内容或者图像URL
})
};
// 对本地图像进行Base64编码
function encodeImageToBase64(filePath) {
const bitmap = fs.readFileSync(filePath);
return Buffer.from(bitmap).toString('base64');
}
// 调用API
axios.request(config)
.then((response) => {
// 处理接口返回数据
const result = response.data["result"];
const imageBuffer = Buffer.from(result["image"], 'base64');
fs.writeFile(outputImagePath, imageBuffer, (err) => {
if (err) throw err;
console.log(`Output image saved at ${outputImagePath}`);
});
console.log("\nDetected objects:");
console.log(result["detectedObjects"]);
})
.catch((error) => {
console.log(error);
});
PHP
<?php
$API_URL = "http://localhost:8080/small-object-segmentation"; // 服务URL
$image_path = "./demo.jpg";
$output_image_path = "./out.jpg";
// 对本地图像进行Base64编码
$image_data = base64_encode(file_get_contents($image_path));
$payload = array("image" => $image_data); // Base64编码的文件内容或者图像URL
// 调用API
$ch = curl_init($API_URL);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);
// 处理接口返回数据
$result = json_decode($response, true)["result"];
file_put_contents($output_image_path, base64_decode($result["image"]));
echo "Output image saved at " . $output_image_path . "\n";
echo "\nDetected objects:\n";
print_r($result["detectedObjects"]);
?>
📱 端侧部署:端侧部署是一种将计算和数据处理功能放在用户设备本身上的方式,设备可以直接处理数据,而不需要依赖远程的服务器。PaddleX 支持将模型部署在 Android 等端侧设备上,详细的端侧部署流程请参考PaddleX端侧部署指南。 您可以根据需要选择合适的方式部署模型产线,进而进行后续的 AI 应用集成。
当前产线暂时不支持微调训练,仅支持推理集成。关于该产线的微调训练,计划在未来支持。
当前产线暂时仅支持GPU和CPU推理。关于该产线对于更多硬件的适配,计划在未来支持。