mobilenetv2.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.cls import transforms
  5. import paddlex as pdx
  6. # 下载和解压蔬菜分类数据集
  7. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  8. pdx.utils.download_and_decompress(veg_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomCrop(crop_size=224),
  12. transforms.RandomHorizontalFlip(),
  13. transforms.Normalize()
  14. ])
  15. eval_transforms = transforms.Compose([
  16. transforms.ResizeByShort(short_size=256),
  17. transforms.CenterCrop(crop_size=224),
  18. transforms.Normalize()
  19. ])
  20. # 定义训练和验证所用的数据集
  21. train_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/train_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.ImageNet(
  28. data_dir='vegetables_cls',
  29. file_list='vegetables_cls/val_list.txt',
  30. label_list='vegetables_cls/labels.txt',
  31. transforms=eval_transforms)
  32. # 可使用VisualDL查看数据预处理的中间结果
  33. # VisualDL启动方式: visualdl --logdir vdl_output --port 8001
  34. # 浏览器打开 https://0.0.0.0:8001即可
  35. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  36. train_transforms.set_vdl(vdl_save_dir='vdl_output')
  37. for step, data in enumerate(train_dataset.iterator()):
  38. data.append(step)
  39. train_transforms(*data)
  40. if step == 5:
  41. break
  42. train_transforms.release_vdl()
  43. # 初始化模型,并进行训练
  44. # 可使用VisualDL查看训练指标
  45. # VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
  46. # 浏览器打开 https://0.0.0.0:8001即可
  47. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  48. model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
  49. model.train(
  50. num_epochs=10,
  51. train_dataset=train_dataset,
  52. train_batch_size=32,
  53. eval_dataset=eval_dataset,
  54. lr_decay_epochs=[4, 6, 8],
  55. learning_rate=0.025,
  56. save_dir='output/mobilenetv2',
  57. use_vdl=True)