yolov3_darknet53.py 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压昆虫检测数据集
  7. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  8. pdx.utils.download_and_decompress(insect_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.MixupImage(mixup_epoch=250),
  12. transforms.RandomDistort(),
  13. transforms.RandomExpand(),
  14. transforms.RandomCrop(),
  15. transforms.Resize(target_size=608, interp='RANDOM'),
  16. transforms.RandomHorizontalFlip(),
  17. transforms.Normalize(),
  18. ])
  19. eval_transforms = transforms.Compose([
  20. transforms.Resize(target_size=608, interp='CUBIC'),
  21. transforms.Normalize(),
  22. ])
  23. # 定义训练和验证所用的数据集
  24. train_dataset = pdx.datasets.VOCDetection(
  25. data_dir='insect_det',
  26. file_list='insect_det/train_list.txt',
  27. label_list='insect_det/labels.txt',
  28. transforms=train_transforms,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.VOCDetection(
  31. data_dir='insect_det',
  32. file_list='insect_det/val_list.txt',
  33. label_list='insect_det/labels.txt',
  34. transforms=eval_transforms)
  35. # 可使用VisualDL查看数据预处理的中间结果
  36. # VisualDL启动方式: visualdl --logdir vdl_output --port 8001
  37. # 浏览器打开 https://0.0.0.0:8001即可
  38. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  39. train_transforms.set_vdl(vdl_save_dir='vdl_output')
  40. for step, data in enumerate(train_dataset.iterator()):
  41. data.append(step)
  42. train_transforms(*data)
  43. if step == 5:
  44. break
  45. train_transforms.release_vdl()
  46. # 可使用VisualDL查看数据预处理的中间结果
  47. # VisualDL启动方式: visualdl --logdir vdl_output --port 8001
  48. # 浏览器打开 https://0.0.0.0:8001即可
  49. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  50. train_transforms.vdl_save_dir = 'vdl_output'
  51. for step, data in enumerate(train_dataset.iterator()):
  52. data.append(step)
  53. train_transforms(*data)
  54. if step == 5:
  55. break
  56. train_transforms.vdl_save_dir = None
  57. # 初始化模型,并进行训练
  58. # 可使用VisualDL查看训练指标
  59. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  60. # 浏览器打开 https://0.0.0.0:8001即可
  61. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  62. num_classes = len(train_dataset.labels)
  63. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  64. model.train(
  65. num_epochs=270,
  66. train_dataset=train_dataset,
  67. train_batch_size=8,
  68. eval_dataset=eval_dataset,
  69. learning_rate=0.000125,
  70. lr_decay_epochs=[210, 240],
  71. save_dir='output/yolov3_darknet53',
  72. use_vdl=True)