deeplabv3p.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddlex as pdx
  5. from paddlex.seg import transforms
  6. # 下载和解压视盘分割数据集
  7. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  8. pdx.utils.download_and_decompress(optic_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomHorizontalFlip(),
  12. transforms.Resize(target_size=512),
  13. transforms.RandomPaddingCrop(crop_size=500),
  14. transforms.Normalize()
  15. ])
  16. eval_transforms = transforms.Compose(
  17. [transforms.Resize(512), transforms.Normalize()])
  18. # 定义训练和验证所用的数据集
  19. train_dataset = pdx.datasets.SegDataset(
  20. data_dir='optic_disc_seg',
  21. file_list='optic_disc_seg/train_list.txt',
  22. label_list='optic_disc_seg/labels.txt',
  23. transforms=train_transforms,
  24. shuffle=True)
  25. eval_dataset = pdx.datasets.SegDataset(
  26. data_dir='optic_disc_seg',
  27. file_list='optic_disc_seg/val_list.txt',
  28. label_list='optic_disc_seg/labels.txt',
  29. transforms=eval_transforms)
  30. # 可使用VisualDL查看数据预处理的中间结果
  31. # VisualDL启动方式: visualdl --logdir vdl_output --port 8001
  32. # 浏览器打开 https://0.0.0.0:8001即可
  33. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  34. train_transforms.vdl_save_dir = 'vdl_output'
  35. for step, data in enumerate(train_dataset.iterator()):
  36. data.append(step)
  37. train_transforms(*data)
  38. if step == 5:
  39. break
  40. train_transforms.vdl_save_dir = None
  41. # 初始化模型,并进行训练
  42. # 可使用VisualDL查看训练指标
  43. # VisualDL启动方式: visualdl --logdir output/deeplab/vdl_log --port 8001
  44. # 浏览器打开 https://0.0.0.0:8001即可
  45. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  46. num_classes = len(train_dataset.labels)
  47. model = pdx.seg.DeepLabv3p(num_classes=num_classes)
  48. model.train(
  49. num_epochs=40,
  50. train_dataset=train_dataset,
  51. train_batch_size=4,
  52. eval_dataset=eval_dataset,
  53. learning_rate=0.01,
  54. save_dir='output/deeplab',
  55. use_vdl=True)