PaddleX incorporates multiple pipelines, each containing several modules, and each module encompasses various models. You can select the appropriate models based on the benchmark data below. If you prioritize model accuracy, choose models with higher accuracy. If you prioritize model size, select models with smaller storage requirements.
| Model Name | Top-1 Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| CLIP_vit_base_patch16_224 | 85.36 | 306.5 M | Inference Model/Trained Model |
| CLIP_vit_large_patch14_224 | 88.1 | 1.04 G | Inference Model/Trained Model |
| ConvNeXt_base_224 | 83.84 | 313.9 M | Inference Model/Trained Model |
| ConvNeXt_base_384 | 84.90 | 313.9 M | Inference Model/Trained Model |
| ConvNeXt_large_224 | 84.26 | 700.7 M | Inference Model/Trained Model |
| ConvNeXt_large_384 | 85.27 | 700.7 M | Inference Model/Trained Model |
| ConvNeXt_small | 83.13 | 178.0 M | Inference Model/Trained Model |
| ConvNeXt_tiny | 82.03 | 101.4 M | Inference Model/Trained Model |
| MobileNetV1_x0_5 | 63.5 | 4.8 M | Inference Model/Trained Model |
| MobileNetV1_x0_25 | 51.4 | 1.8 M | Inference Model/Trained Model |
| MobileNetV1_x0_75 | 68.8 | 9.3 M | Inference Model/Trained Model |
| MobileNetV1_x1_0 | 71.0 | 15.2 M | Inference Model/Trained Model |
| MobileNetV2_x0_5 | 65.0 | 7.1 M | Inference Model/Trained Model |
| MobileNetV2_x0_25 | 53.2 | 5.5 M | Inference Model/Trained Model |
| MobileNetV2_x1_0 | 72.2 | 12.6 M | Inference Model/Trained Model |
| MobileNetV2_x1_5 | 74.1 | 25.0 M | Inference Model/Trained Model |
| MobileNetV2_x2_0 | 75.2 | 41.2 M | Inference Model/Trained Model |
| MobileNetV3_large_x0_5 | 69.2 | 9.6 M | Inference Model/Trained Model |
| MobileNetV3_large_x0_35 | 64.3 | 7.5 M | Inference Model/Trained Model |
| MobileNetV3_large_x0_75 | 73.1 | 14.0 M | Inference Model/Trained Model |
| MobileNetV3_large_x1_0 | 75.3 | 19.5 M | Inference Model/Trained Model |
| MobileNetV3_large_x1_25 | 76.4 | 26.5 M | Inference Model/Trained Model |
| MobileNetV3_small_x0_5 | 59.2 | 6.8 M | Inference Model/Trained Model |
| MobileNetV3_small_x0_35 | 53.0 | 6.0 M | Inference Model/Trained Model |
| MobileNetV3_small_x0_75 | 66.0 | 8.5 M | Inference Model/Trained Model |
| MobileNetV3_small_x1_0 | 68.2 | 10.5 M | Inference Model/Trained Model |
| MobileNetV3_small_x1_25 | 70.7 | 13.0 M | Inference Model/Trained Model |
| MobileNetV4_conv_large | 83.4 | 125.2 M | Inference Model/Trained Model |
| MobileNetV4_conv_medium | 79.9 | 37.6 M | Inference Model/Trained Model |
| MobileNetV4_conv_small | 74.6 | 14.7 M | Inference Model/Trained Model |
| PP-HGNet_base | 85.0 | 249.4 M | Inference Model/Trained Model |
| PP-HGNet_small | 81.51 | 86.5 M | Inference Model/Trained Model |
| PP-HGNet_tiny | 79.83 | 52.4 M | Inference Model/Trained Model |
| PP-HGNetV2-B0 | 77.77 | 21.4 M | Inference Model/Trained Model |
| PP-HGNetV2-B1 | 79.18 | 22.6 M | Inference Model/Trained Model |
| PP-HGNetV2-B2 | 81.74 | 39.9 M | Inference Model/Trained Model |
| PP-HGNetV2-B3 | 82.98 | 57.9 M | Inference Model/Trained Model |
| PP-HGNetV2-B4 | 83.57 | 70.4 M | Inference Model/Trained Model |
| PP-HGNetV2-B5 | 84.75 | 140.8 M | Inference Model/Trained Model |
| PP-HGNetV2-B6 | 86.30 | 268.4 M | Inference Model/Trained Model |
| PP-LCNet_x0_5 | 63.14 | 6.7 M | Inference Model/Trained Model |
| PP-LCNet_x0_25 | 51.86 | 5.5 M | Inference Model/Trained Model |
| PP-LCNet_x0_35 | 58.09 | 5.9 M | Inference Model/Trained Model |
| PP-LCNet_x0_75 | 68.18 | 8.4 M | Inference Model/Trained Model |
| PP-LCNet_x1_0 | 71.32 | 10.5 M | Inference Model/Trained Model |
| PP-LCNet_x1_5 | 73.71 | 16.0 M | Inference Model/Trained Model |
| PP-LCNet_x2_0 | 75.18 | 23.2 M | Inference Model/Trained Model |
| PP-LCNet_x2_5 | 76.60 | 32.1 M | Inference Model/Trained Model |
| PP-LCNetV2_base | 77.05 | 23.7 M | Inference Model/Trained Model |
| PP-LCNetV2_large | 78.51 | 37.3 M | Inference Model/Trained Model |
| PP-LCNetV2_small | 73.97 | 14.6 M | Inference Model/Trained Model |
| ResNet18_vd | 72.3 | 41.5 M | Inference Model/Trained Model |
| ResNet18 | 71.0 | 41.5 M | Inference Model/Trained Model |
| ResNet34_vd | 76.0 | 77.3 M | Inference Model/Trained Model |
| ResNet34 | 74.6 | 77.3 M | Inference Model/Trained Model |
| ResNet50_vd | 79.1 | 90.8 M | Inference Model/Trained Model |
| ResNet50 | 76.5 | 90.8 M | Inference Model/Trained Model |
| ResNet101_vd | 80.2 | 158.4 M | Inference Model/Trained Model |
| ResNet101 | 77.6 | 158.7 M | Inference Model/Trained Model |
| ResNet152_vd | 80.6 | 214.3 M | Inference Model/Trained Model |
| ResNet152 | 78.3 | 214.2 M | Inference Model/Trained Model |
| ResNet200_vd | 80.9 | 266.0 M | Inference Model/Trained Model |
| SwinTransformer_base_patch4_window7_224 | 83.37 | 310.5 M | Inference Model/Trained Model |
| SwinTransformer_base_patch4_window12_384 | 84.17 | 311.4 M | Inference Model/Trained Model |
| SwinTransformer_large_patch4_window7_224 | 86.19 | 694.8 M | Inference Model/Trained Model |
| SwinTransformer_large_patch4_window12_384 | 87.06 | 696.1 M | Inference Model/Trained Model |
| SwinTransformer_small_patch4_window7_224 | 83.21 | 175.6 M | Inference Model/Trained Model |
| SwinTransformer_tiny_patch4_window7_224 | 81.10 | 100.1 M | Inference Model/Trained Model |
| Model Name | mAP (%) | Model Storage Size | Model Download Link |
|---|---|---|---|
| CLIP_vit_base_patch16_448_ML | 89.15 | 325.6 M | Inference Model/Training Model |
| PP-HGNetV2-B0_ML | 80.98 | 39.6 M | Inference Model/Training Model |
| PP-HGNetV2-B4_ML | 87.96 | 88.5 M | Inference Model/Training Model |
| PP-HGNetV2-B6_ML | 91.06 | 286.5 M | Inference Model/Training Model |
| Model Name | mAP (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| Cascade-FasterRCNN-ResNet50-FPN | 41.1 | 245.4 M | Inference Model/Trained Model |
| Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN | 45.0 | 246.2 M | Inference Model/Trained Model |
| CenterNet-DLA-34 | 37.6 | 75.4 M | Inference Model/Trained Model |
| CenterNet-ResNet50 | 38.9 | 319.7 M | Inference Model/Trained Model |
| DETR-R50 | 42.3 | 159.3 M | Inference Model/Trained Model |
| FasterRCNN-ResNet34-FPN | 37.8 | 137.5 M | Inference Model/Trained Model |
| FasterRCNN-ResNet50 | 36.7 | 120.2 M | Inference Model/Trained Model |
| FasterRCNN-ResNet50-FPN | 38.4 | 148.1 M | Inference Model/Trained Model |
| FasterRCNN-ResNet50-vd-FPN | 39.5 | 148.1 M | Inference Model/Trained Model |
| FasterRCNN-ResNet50-vd-SSLDv2-FPN | 41.4 | 148.1 M | Inference Model/Trained Model |
| FasterRCNN-ResNet101 | 39.0 | 188.1 M | Inference Model/Trained Model |
| FasterRCNN-ResNet101-FPN | 41.4 | 216.3 M | Inference Model/Trained Model |
| FasterRCNN-ResNeXt101-vd-FPN | 43.4 | 360.6 M | Inference Model/Trained Model |
| FasterRCNN-Swin-Tiny-FPN | 42.6 | 159.8 M | Inference Model/Trained Model |
| FCOS-ResNet50 | 39.6 | 124.2 M | Inference Model/Trained Model |
| PicoDet-L | 42.6 | 20.9 M | Inference Model/Trained Model |
| PicoDet-M | 37.5 | 16.8 M | Inference Model/Trained Model |
| PicoDet-S | 29.1 | 4.4 M | Inference Model/Trained Model |
| PicoDet-XS | 26.2 | 5.7M | Inference Model/Trained Model |
| PP-YOLOE_plus-L | 52.9 | 185.3 M | Inference Model/Trained Model |
| PP-YOLOE_plus-M | 49.8 | 83.2 M | Inference Model/Trained Model |
| PP-YOLOE_plus-S | 43.7 | 28.3 M | Inference Model/Trained Model |
| PP-YOLOE_plus-X | 54.7 | 349.4 M | Inference Model/Trained Model |
| RT-DETR-H | 56.3 | 435.8 M | Inference Model/Trained Model |
| RT-DETR-L | 53.0 | 113.7 M | Inference Model/Trained Model |
| RT-DETR-R18 | 46.5 | 70.7 M | Inference Model/Trained Model |
| RT-DETR-R50 | 53.1 | 149.1 M | Inference Model/Trained Model |
| RT-DETR-X | 54.8 | 232.9 M | Inference Model/Trained Model |
| YOLOv3-DarkNet53 | 39.1 | 219.7 M | Inference Model/Trained Model |
| YOLOv3-MobileNetV3 | 31.4 | 83.8 M | Inference Model/Trained Model |
| YOLOv3-ResNet50_vd_DCN | 40.6 | 163.0 M | Inference Model/Trained Model |
| 模型名称 | mAP(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| PP-YOLOE_plus_SOD-S | 25.1 | 77.3 M | Inference Model/Trained Model |
| PP-YOLOE_plus_SOD-L | 31.9 | 325.0 M | Inference Model/Trained Model |
| PP-YOLOE_plus_SOD-largesize-L | 42.7 | 340.5 M | Inference Model/Trained Model |
| 模型名称 | mAP(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| PP-YOLOE-L_human | 48.0 | 196.1 M | Inference Model/Trained Model |
| PP-YOLOE-S_human | 42.5 | 28.8 M | Inference Model/Trained Model |
| Model Name | mIoU (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| Deeplabv3_Plus-R50 | 80.36 | 94.9 M | Inference Model/Trained Model |
| Deeplabv3_Plus-R101 | 81.10 | 162.5 M | Inference Model/Trained Model |
| Deeplabv3-R50 | 79.90 | 138.3 M | Inference Model/Trained Model |
| Deeplabv3-R101 | 80.85 | 205.9 M | Inference Model/Trained Model |
| OCRNet_HRNet-W48 | 82.15 | 249.8 M | Inference Model/Trained Model |
| PP-LiteSeg-T | 73.10 | 28.5 M | Inference Model/Trained Model |
| Model Name | Mask AP | Model Size (M) | Model Download Link |
|---|---|---|---|
| Mask-RT-DETR-H | 50.6 | 449.9 M | Inference Model/Trained Model |
| Mask-RT-DETR-L | 45.7 | 113.6 M | Inference Model/Trained Model |
| Mask-RT-DETR-M | 42.7 | 66.6 M | Inference Model/Trained Model |
| Mask-RT-DETR-S | 41.0 | 51.8 M | Inference Model/Trained Model |
| Mask-RT-DETR-X | 47.5 | 237.5 M | Inference Model/Trained Model |
| Cascade-MaskRCNN-ResNet50-FPN | 36.3 | 254.8 M | Inference Model/Trained Model |
| Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN | 39.1 | 254.7 M | Inference Model/Trained Model |
| MaskRCNN-ResNet50-FPN | 35.6 | 157.5 M | Inference Model/Trained Model |
| MaskRCNN-ResNet50-vd-FPN | 36.4 | 157.5 M | Inference Model/Trained Model |
| MaskRCNN-ResNet50 | 32.8 | 127.8 M | Inference Model/Trained Model |
| MaskRCNN-ResNet101-FPN | 36.6 | 225.4 M | Inference Model/Trained Model |
| MaskRCNN-ResNet101-vd-FPN | 38.1 | 225.1 M | Inference Model/Trained Model |
| MaskRCNN-ResNeXt101-vd-FPN | 39.5 | 370.0 M | Inference Model/Trained Model |
| PP-YOLOE_seg-S | 32.5 | 31.5 M | Inference Model/Trained Model |
| 模型名称 | recall@1(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| PP-ShiTuV2_rec_CLIP_vit_base | 88.69 | 306.6 M | Inference Model/Trained Model |
| PP-ShiTuV2_rec_CLIP_vit_large | 91.03 | 1.05 G | Inference Model/Trained Model |
| 模型名称 | mAP(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| PP-ShiTuV2_det | 41.5 | 27.6 M | Inference Model/Trained Model |
| 模型名称 | mAP(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| PP-YOLOE-L_vehicle | 63.9 | 196.1 M | Inference Model/Trained Model |
| PP-YOLOE-S_vehicle | 61.3 | 28.8 M | Inference Model/Trained Model |
| 模型名称 | Avg(%) | 模型存储大小 | Model Download Link |
|---|---|---|---|
| STFPM | 96.2 | 21.5 M | Inference Model/Trained Model |
| Model Name | Detection Hmean (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_det | 77.79 | 4.2 M | Inference Model/Trained Model |
| PP-OCRv4_server_det | 82.69 | 100.1 M | Inference Model/Trained Model |
| Model Name | Recognition Avg Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_rec | 78.20 | 10.6 M | Inference Model/Trained Model |
| PP-OCRv4_server_rec | 79.20 | 71.2 M | Inference Model/Trained Model |
| Model Name | Recognition Avg Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| ch_SVTRv2_rec | 68.81 | 73.9 M | Inference Model/Trained Model |
| Model Name | Recognition Avg Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| ch_RepSVTR_rec | 65.07 | 22.1 M | Inference Model/Trained Model |
| Model Name | Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| SLANet | 76.31 | 6.9 M | Inference Model/Trained Model |
| Model Name | mAP (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PicoDet_layout_1x | 86.8 | 7.4M | Inference Model/Trained Model |
| PicoDet-L_layout_3cls | 89.3 | 22.6 M | Inference Model/Trained Model |
| RT-DETR-H_layout_3cls | 95.9 | 470.1 M | Inference Model/Trained Model |
| RT-DETR-H_layout_17cls | 92.6 | 470.2 M | Inference Model/Trained Model |
| Model Name | MSE | MAE | Model Size (M) | Model Download Link |
|---|---|---|---|---|
| DLinear | 0.382 | 0.394 | 72K | Inference Model/Trained Model |
| NLinear | 0.386 | 0.392 | 40K | Inference Model/Trained Model |
| Nonstationary | 0.600 | 0.515 | 55.5 M | Inference Model/Trained Model |
| PatchTST | 0.385 | 0.397 | 2.0M | Inference Model/Trained Model |
| RLinear | 0.384 | 0.392 | 40K | Inference Model/Trained Model |
| TiDE | 0.405 | 0.412 | 31.7M | Inference Model/Trained Model |
| TimesNet | 0.417 | 0.431 | 4.9M | Inference Model/Trained Model |
| Model Name | Precision | Recall | F1-Score | Model Size (M) | Model Download Link |
|---|---|---|---|---|---|
| AutoEncoder_ad | 99.36 | 84.36 | 91.25 | 52K | Inference Model/Trained Model |
| DLinear_ad | 98.98 | 93.96 | 96.41 | 112K | Inference Model/Trained Model |
| Nonstationary_ad | 98.55 | 88.95 | 93.51 | 1.8M | Inference Model/Trained Model |
| PatchTST_ad | 98.78 | 90.70 | 94.57 | 320K | Inference Model/Trained Model |
| TimesNet_ad | 98.37 | 94.80 | 96.56 | 1.3M | Inference Model/Trained Model |
| Model Name | Acc (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| TimesNet_cls | 87.5 | 792K | Inference Model/Trained Model |