classifier.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import math
  16. import os.path as osp
  17. from collections import OrderedDict
  18. import numpy as np
  19. import paddle
  20. from paddle import to_tensor
  21. import paddle.nn.functional as F
  22. from paddle.static import InputSpec
  23. from paddlex.utils import logging, TrainingStats, DisablePrint
  24. from paddlex.cv.models.base import BaseModel
  25. from paddlex.cv.transforms import arrange_transforms
  26. from paddlex.cv.transforms.operators import Resize
  27. with DisablePrint():
  28. from PaddleClas.ppcls.modeling import architectures
  29. from PaddleClas.ppcls.modeling.loss import CELoss
  30. __all__ = [
  31. "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152",
  32. "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld",
  33. "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd",
  34. "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small",
  35. "MobileNetV3_small_ssld", "MobileNetV3_large", "MobileNetV3_large_ssld",
  36. "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264",
  37. "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C",
  38. "HRNet_W48_C", "HRNet_W64_C", "Xception41", "Xception65", "Xception71",
  39. "ShuffleNetV2", "ShuffleNetV2_swish"
  40. ]
  41. class BaseClassifier(BaseModel):
  42. """Parent class of all classification models.
  43. Args:
  44. model_name (str, optional): Name of classification model. Defaults to 'ResNet50'.
  45. num_classes (int, optional): The number of target classes. Defaults to 1000.
  46. """
  47. def __init__(self, model_name='ResNet50', num_classes=1000, **params):
  48. self.init_params = locals()
  49. self.init_params.update(params)
  50. if 'lr_mult_list' in self.init_params:
  51. del self.init_params['lr_mult_list']
  52. super(BaseClassifier, self).__init__('classifier')
  53. if not hasattr(architectures, model_name):
  54. raise Exception("ERROR: There's no model named {}.".format(
  55. model_name))
  56. self.model_name = model_name
  57. self.labels = None
  58. self.num_classes = num_classes
  59. for k, v in params.items():
  60. setattr(self, k, v)
  61. self.net = self.build_net(**params)
  62. def build_net(self, **params):
  63. with paddle.utils.unique_name.guard():
  64. net = architectures.__dict__[self.model_name](
  65. class_dim=self.num_classes, **params)
  66. return net
  67. def _fix_transforms_shape(self, image_shape):
  68. if hasattr(self, 'test_transforms'):
  69. if self.test_transforms is not None:
  70. self.test_transforms.transforms.append(
  71. Resize(target_size=image_shape))
  72. def _get_test_inputs(self, image_shape):
  73. if image_shape is not None:
  74. if len(image_shape) == 2:
  75. image_shape = [None, 3] + image_shape
  76. self._fix_transforms_shape(image_shape[-2:])
  77. else:
  78. image_shape = [None, 3, -1, -1]
  79. input_spec = [
  80. InputSpec(
  81. shape=image_shape, name='image', dtype='float32')
  82. ]
  83. return input_spec
  84. def run(self, net, inputs, mode):
  85. net_out = net(inputs[0])
  86. softmax_out = F.softmax(net_out)
  87. if mode == 'test':
  88. outputs = OrderedDict([('prediction', softmax_out)])
  89. elif mode == 'eval':
  90. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  91. 1))
  92. acc1 = paddle.metric.accuracy(softmax_out, label=labels)
  93. k = min(5, self.num_classes)
  94. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  95. # multi cards eval
  96. if paddle.distributed.get_world_size() > 1:
  97. acc1 = paddle.distributed.all_reduce(
  98. acc1, op=paddle.distributed.ReduceOp.
  99. SUM) / paddle.distributed.get_world_size()
  100. acck = paddle.distributed.all_reduce(
  101. acck, op=paddle.distributed.ReduceOp.
  102. SUM) / paddle.distributed.get_world_size()
  103. outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck),
  104. ('prediction', softmax_out)])
  105. else:
  106. # mode == 'train'
  107. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  108. 1))
  109. loss = CELoss(class_dim=self.num_classes)
  110. loss = loss(net_out, inputs[1])
  111. acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1)
  112. k = min(5, self.num_classes)
  113. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  114. outputs = OrderedDict([('loss', loss), ('acc1', acc1),
  115. ('acc{}'.format(k), acck)])
  116. return outputs
  117. def default_optimizer(self, parameters, learning_rate, warmup_steps,
  118. warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
  119. num_steps_each_epoch):
  120. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  121. values = [
  122. learning_rate * (lr_decay_gamma**i)
  123. for i in range(len(lr_decay_epochs) + 1)
  124. ]
  125. scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
  126. if warmup_steps > 0:
  127. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  128. logging.error(
  129. "In function train(), parameters should satisfy: "
  130. "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  131. exit=False)
  132. logging.error(
  133. "See this doc for more information: "
  134. "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  135. exit=False)
  136. logging.error(
  137. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, "
  138. "please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  139. format(lr_decay_epochs[0] * num_steps_each_epoch,
  140. warmup_steps // num_steps_each_epoch))
  141. scheduler = paddle.optimizer.lr.LinearWarmup(
  142. learning_rate=scheduler,
  143. warmup_steps=warmup_steps,
  144. start_lr=warmup_start_lr,
  145. end_lr=learning_rate)
  146. optimizer = paddle.optimizer.Momentum(
  147. scheduler,
  148. momentum=.9,
  149. weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
  150. parameters=parameters)
  151. return optimizer
  152. def train(self,
  153. num_epochs,
  154. train_dataset,
  155. train_batch_size=64,
  156. eval_dataset=None,
  157. optimizer=None,
  158. save_interval_epochs=1,
  159. log_interval_steps=10,
  160. save_dir='output',
  161. pretrain_weights='IMAGENET',
  162. learning_rate=.025,
  163. warmup_steps=0,
  164. warmup_start_lr=0.0,
  165. lr_decay_epochs=(30, 60, 90),
  166. lr_decay_gamma=0.1,
  167. early_stop=False,
  168. early_stop_patience=5,
  169. use_vdl=True):
  170. """
  171. Train the model.
  172. Args:
  173. num_epochs(int): The number of epochs.
  174. train_dataset(paddlex.dataset): Training dataset.
  175. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  176. eval_dataset(paddlex.dataset, optional):
  177. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  178. optimizer(paddle.optimizer.Optimizer or None, optional):
  179. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  180. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  181. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  182. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  183. pretrain_weights(str or None, optional):
  184. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  185. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  186. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  187. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  188. lr_decay_epochs(List[int] or Tuple[int], optional):
  189. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  190. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  191. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  192. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  193. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  194. """
  195. self.labels = train_dataset.labels
  196. # build optimizer if not defined
  197. if optimizer is None:
  198. num_steps_each_epoch = len(train_dataset) // train_batch_size
  199. self.optimizer = self.default_optimizer(
  200. parameters=self.net.parameters(),
  201. learning_rate=learning_rate,
  202. warmup_steps=warmup_steps,
  203. warmup_start_lr=warmup_start_lr,
  204. lr_decay_epochs=lr_decay_epochs,
  205. lr_decay_gamma=lr_decay_gamma,
  206. num_steps_each_epoch=num_steps_each_epoch)
  207. else:
  208. self.optimizer = optimizer
  209. # initiate weights
  210. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  211. if pretrain_weights not in ['IMAGENET']:
  212. logging.warning(
  213. "Path of pretrain_weights('{}') does not exist!".format(
  214. pretrain_weights))
  215. logging.warning(
  216. "Pretrain_weights is forcibly set to 'IMAGENET'. "
  217. "If don't want to use pretrain weights, "
  218. "set pretrain_weights to be None.")
  219. pretrain_weights = 'IMAGENET'
  220. pretrained_dir = osp.join(save_dir, 'pretrain')
  221. self.net_initialize(
  222. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  223. # start train loop
  224. self.train_loop(
  225. num_epochs=num_epochs,
  226. train_dataset=train_dataset,
  227. train_batch_size=train_batch_size,
  228. eval_dataset=eval_dataset,
  229. save_interval_epochs=save_interval_epochs,
  230. log_interval_steps=log_interval_steps,
  231. save_dir=save_dir,
  232. early_stop=early_stop,
  233. early_stop_patience=early_stop_patience,
  234. use_vdl=use_vdl)
  235. def quant_aware_train(self,
  236. num_epochs,
  237. train_dataset,
  238. train_batch_size=64,
  239. eval_dataset=None,
  240. optimizer=None,
  241. save_interval_epochs=1,
  242. log_interval_steps=10,
  243. save_dir='output',
  244. learning_rate=.000025,
  245. warmup_steps=0,
  246. warmup_start_lr=0.0,
  247. lr_decay_epochs=(30, 60, 90),
  248. lr_decay_gamma=0.1,
  249. early_stop=False,
  250. early_stop_patience=5,
  251. use_vdl=True,
  252. quant_config=None):
  253. """
  254. Quantization-aware training.
  255. Args:
  256. num_epochs(int): The number of epochs.
  257. train_dataset(paddlex.dataset): Training dataset.
  258. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  259. eval_dataset(paddlex.dataset, optional):
  260. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  261. optimizer(paddle.optimizer.Optimizer or None, optional):
  262. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  263. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  264. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  265. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  266. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  267. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  268. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  269. lr_decay_epochs(List[int] or Tuple[int], optional):
  270. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  271. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  272. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  273. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  274. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  275. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  276. configuration will be used. Defaults to None.
  277. """
  278. self._prepare_qat(quant_config)
  279. self.train(
  280. num_epochs=num_epochs,
  281. train_dataset=train_dataset,
  282. train_batch_size=train_batch_size,
  283. eval_dataset=eval_dataset,
  284. optimizer=optimizer,
  285. save_interval_epochs=save_interval_epochs,
  286. log_interval_steps=log_interval_steps,
  287. save_dir=save_dir,
  288. pretrain_weights=None,
  289. learning_rate=learning_rate,
  290. warmup_steps=warmup_steps,
  291. warmup_start_lr=warmup_start_lr,
  292. lr_decay_epochs=lr_decay_epochs,
  293. lr_decay_gamma=lr_decay_gamma,
  294. early_stop=early_stop,
  295. early_stop_patience=early_stop_patience,
  296. use_vdl=use_vdl)
  297. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  298. """
  299. Evaluate the model.
  300. Args:
  301. eval_dataset(paddlex.dataset): Evaluation dataset.
  302. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  303. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  304. Returns:
  305. collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}.
  306. """
  307. # 给transform添加arrange操作
  308. arrange_transforms(
  309. model_type=self.model_type,
  310. transforms=eval_dataset.transforms,
  311. mode='eval')
  312. self.net.eval()
  313. nranks = paddle.distributed.get_world_size()
  314. local_rank = paddle.distributed.get_rank()
  315. if nranks > 1:
  316. # Initialize parallel environment if not done.
  317. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  318. ):
  319. paddle.distributed.init_parallel_env()
  320. self.eval_data_loader = self.build_data_loader(
  321. eval_dataset, batch_size=batch_size, mode='eval')
  322. eval_metrics = TrainingStats()
  323. eval_details = None
  324. if return_details:
  325. eval_details = list()
  326. logging.info(
  327. "Start to evaluate(total_samples={}, total_steps={})...".format(
  328. eval_dataset.num_samples,
  329. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  330. with paddle.no_grad():
  331. for step, data in enumerate(self.eval_data_loader()):
  332. outputs = self.run(self.net, data, mode='eval')
  333. if return_details:
  334. eval_details.append(outputs['prediction'].numpy())
  335. outputs.pop('prediction')
  336. eval_metrics.update(outputs)
  337. if return_details:
  338. return eval_metrics.get(), eval_details
  339. else:
  340. return eval_metrics.get()
  341. def predict(self, img_file, transforms=None, topk=1):
  342. """
  343. Do inference.
  344. Args:
  345. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  346. Image path or decoded image data in a BGR format, which also could constitute a list,
  347. meaning all images to be predicted as a mini-batch.
  348. transforms(paddlex.transforms.Compose or None, optional):
  349. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  350. topk(int, optional): Keep topk results in prediction. Defaults to 1.
  351. Returns:
  352. If img_file is a string or np.array, the result is a dict with key-value pairs:
  353. {"category_id": `category_id`, "category": `category`, "score": `score`}.
  354. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  355. category_id(int): the predicted category ID
  356. category(str): category name
  357. score(float): confidence
  358. """
  359. if transforms is None and not hasattr(self, 'test_transforms'):
  360. raise Exception("transforms need to be defined, now is None.")
  361. if transforms is None:
  362. transforms = self.test_transforms
  363. true_topk = min(self.num_classes, topk)
  364. if isinstance(img_file, (str, np.ndarray)):
  365. images = [img_file]
  366. else:
  367. images = img_file
  368. im = self._preprocess(images, transforms, self.model_type)
  369. self.net.eval()
  370. with paddle.no_grad():
  371. outputs = self.run(self.net, im, mode='test')
  372. prediction = outputs['prediction'].numpy()
  373. prediction = self._postprocess(prediction, true_topk, self.labels)
  374. if isinstance(img_file, (str, np.ndarray)):
  375. prediction = prediction[0]
  376. return prediction
  377. def _preprocess(self, images, transforms, model_type):
  378. arrange_transforms(
  379. model_type=model_type, transforms=transforms, mode='test')
  380. batch_im = list()
  381. for im in images:
  382. sample = {'image': im}
  383. batch_im.append(transforms(sample))
  384. batch_im = to_tensor(batch_im)
  385. return batch_im,
  386. def _postprocess(self, results, true_topk, labels):
  387. preds = list()
  388. for i, pred in enumerate(results):
  389. pred_label = np.argsort(pred)[::-1][:true_topk]
  390. preds.append([{
  391. 'category_id': l,
  392. 'category': labels[l],
  393. 'score': results[i][l]
  394. } for l in pred_label])
  395. return preds
  396. class ResNet18(BaseClassifier):
  397. def __init__(self, num_classes=1000):
  398. super(ResNet18, self).__init__(
  399. model_name='ResNet18', num_classes=num_classes)
  400. class ResNet34(BaseClassifier):
  401. def __init__(self, num_classes=1000):
  402. super(ResNet34, self).__init__(
  403. model_name='ResNet34', num_classes=num_classes)
  404. class ResNet50(BaseClassifier):
  405. def __init__(self, num_classes=1000):
  406. super(ResNet50, self).__init__(
  407. model_name='ResNet50', num_classes=num_classes)
  408. class ResNet101(BaseClassifier):
  409. def __init__(self, num_classes=1000):
  410. super(ResNet101, self).__init__(
  411. model_name='ResNet101', num_classes=num_classes)
  412. class ResNet152(BaseClassifier):
  413. def __init__(self, num_classes=1000):
  414. super(ResNet152, self).__init__(
  415. model_name='ResNet152', num_classes=num_classes)
  416. class ResNet18_vd(BaseClassifier):
  417. def __init__(self, num_classes=1000):
  418. super(ResNet18_vd, self).__init__(
  419. model_name='ResNet18_vd', num_classes=num_classes)
  420. class ResNet34_vd(BaseClassifier):
  421. def __init__(self, num_classes=1000):
  422. super(ResNet34_vd, self).__init__(
  423. model_name='ResNet34_vd', num_classes=num_classes)
  424. class ResNet50_vd(BaseClassifier):
  425. def __init__(self, num_classes=1000):
  426. super(ResNet50_vd, self).__init__(
  427. model_name='ResNet50_vd', num_classes=num_classes)
  428. class ResNet50_vd_ssld(BaseClassifier):
  429. def __init__(self, num_classes=1000):
  430. super(ResNet50_vd_ssld, self).__init__(
  431. model_name='ResNet50_vd',
  432. num_classes=num_classes,
  433. lr_mult_list=[.1, .1, .2, .2, .3])
  434. self.model_name = 'ResNet50_vd_ssld'
  435. class ResNet101_vd(BaseClassifier):
  436. def __init__(self, num_classes=1000):
  437. super(ResNet101_vd, self).__init__(
  438. model_name='ResNet101_vd', num_classes=num_classes)
  439. class ResNet101_vd_ssld(BaseClassifier):
  440. def __init__(self, num_classes=1000):
  441. super(ResNet101_vd_ssld, self).__init__(
  442. model_name='ResNet101_vd',
  443. num_classes=num_classes,
  444. lr_mult_list=[.1, .1, .2, .2, .3])
  445. self.model_name = 'ResNet101_vd_ssld'
  446. class ResNet152_vd(BaseClassifier):
  447. def __init__(self, num_classes=1000):
  448. super(ResNet152_vd, self).__init__(
  449. model_name='ResNet152_vd', num_classes=num_classes)
  450. class ResNet200_vd(BaseClassifier):
  451. def __init__(self, num_classes=1000):
  452. super(ResNet200_vd, self).__init__(
  453. model_name='ResNet200_vd', num_classes=num_classes)
  454. class AlexNet(BaseClassifier):
  455. def __init__(self, num_classes=1000):
  456. super(AlexNet, self).__init__(
  457. model_name='AlexNet', num_classes=num_classes)
  458. def _get_test_inputs(self, image_shape):
  459. if image_shape is not None:
  460. if len(image_shape) == 2:
  461. image_shape = [None, 3] + image_shape
  462. else:
  463. image_shape = [None, 3, 224, 224]
  464. logging.info('When exporting inference model for {},'.format(
  465. self.__class__.__name__
  466. ) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  467. )
  468. self._fix_transforms_shape(image_shape[-2:])
  469. input_spec = [
  470. InputSpec(
  471. shape=image_shape, name='image', dtype='float32')
  472. ]
  473. return input_spec
  474. class DarkNet53(BaseClassifier):
  475. def __init__(self, num_classes=1000):
  476. super(DarkNet53, self).__init__(
  477. model_name='DarkNet53', num_classes=num_classes)
  478. class MobileNetV1(BaseClassifier):
  479. def __init__(self, num_classes=1000, scale=1.0):
  480. supported_scale = [.25, .5, .75, 1.0]
  481. if scale not in supported_scale:
  482. logging.warning("scale={} is not supported by MobileNetV1, "
  483. "scale is forcibly set to 1.0".format(scale))
  484. scale = 1.0
  485. if scale == 1:
  486. model_name = 'MobileNetV1'
  487. else:
  488. model_name = 'MobileNetV1_x' + str(scale).replace('.', '_')
  489. self.scale = scale
  490. super(MobileNetV1, self).__init__(
  491. model_name=model_name, num_classes=num_classes)
  492. class MobileNetV2(BaseClassifier):
  493. def __init__(self, num_classes=1000, scale=1.0):
  494. supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0]
  495. if scale not in supported_scale:
  496. logging.warning("scale={} is not supported by MobileNetV2, "
  497. "scale is forcibly set to 1.0".format(scale))
  498. scale = 1.0
  499. if scale == 1:
  500. model_name = 'MobileNetV2'
  501. else:
  502. model_name = 'MobileNetV2_x' + str(scale).replace('.', '_')
  503. super(MobileNetV2, self).__init__(
  504. model_name=model_name, num_classes=num_classes)
  505. class MobileNetV3_small(BaseClassifier):
  506. def __init__(self, num_classes=1000, scale=1.0):
  507. supported_scale = [.35, .5, .75, 1.0, 1.25]
  508. if scale not in supported_scale:
  509. logging.warning("scale={} is not supported by MobileNetV3_small, "
  510. "scale is forcibly set to 1.0".format(scale))
  511. scale = 1.0
  512. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  513. '_')
  514. super(MobileNetV3_small, self).__init__(
  515. model_name=model_name, num_classes=num_classes)
  516. class MobileNetV3_small_ssld(BaseClassifier):
  517. def __init__(self, num_classes=1000, scale=1.0):
  518. supported_scale = [.35, 1.0]
  519. if scale not in supported_scale:
  520. logging.warning(
  521. "scale={} is not supported by MobileNetV3_small_ssld, "
  522. "scale is forcibly set to 1.0".format(scale))
  523. scale = 1.0
  524. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  525. '_')
  526. super(MobileNetV3_small_ssld, self).__init__(
  527. model_name=model_name, num_classes=num_classes)
  528. self.model_name = model_name + '_ssld'
  529. class MobileNetV3_large(BaseClassifier):
  530. def __init__(self, num_classes=1000, scale=1.0):
  531. supported_scale = [.35, .5, .75, 1.0, 1.25]
  532. if scale not in supported_scale:
  533. logging.warning("scale={} is not supported by MobileNetV3_large, "
  534. "scale is forcibly set to 1.0".format(scale))
  535. scale = 1.0
  536. model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.',
  537. '_')
  538. super(MobileNetV3_large, self).__init__(
  539. model_name=model_name, num_classes=num_classes)
  540. class MobileNetV3_large_ssld(BaseClassifier):
  541. def __init__(self, num_classes=1000):
  542. super(MobileNetV3_large_ssld, self).__init__(
  543. model_name='MobileNetV3_large_x1_0', num_classes=num_classes)
  544. self.model_name = 'MobileNetV3_large_x1_0_ssld'
  545. class DenseNet121(BaseClassifier):
  546. def __init__(self, num_classes=1000):
  547. super(DenseNet121, self).__init__(
  548. model_name='DenseNet121', num_classes=num_classes)
  549. class DenseNet161(BaseClassifier):
  550. def __init__(self, num_classes=1000):
  551. super(DenseNet161, self).__init__(
  552. model_name='DenseNet161', num_classes=num_classes)
  553. class DenseNet169(BaseClassifier):
  554. def __init__(self, num_classes=1000):
  555. super(DenseNet169, self).__init__(
  556. model_name='DenseNet169', num_classes=num_classes)
  557. class DenseNet201(BaseClassifier):
  558. def __init__(self, num_classes=1000):
  559. super(DenseNet201, self).__init__(
  560. model_name='DenseNet201', num_classes=num_classes)
  561. class DenseNet264(BaseClassifier):
  562. def __init__(self, num_classes=1000):
  563. super(DenseNet264, self).__init__(
  564. model_name='DenseNet264', num_classes=num_classes)
  565. class HRNet_W18_C(BaseClassifier):
  566. def __init__(self, num_classes=1000):
  567. super(HRNet_W18_C, self).__init__(
  568. model_name='HRNet_W18_C', num_classes=num_classes)
  569. class HRNet_W30_C(BaseClassifier):
  570. def __init__(self, num_classes=1000):
  571. super(HRNet_W30_C, self).__init__(
  572. model_name='HRNet_W30_C', num_classes=num_classes)
  573. class HRNet_W32_C(BaseClassifier):
  574. def __init__(self, num_classes=1000):
  575. super(HRNet_W32_C, self).__init__(
  576. model_name='HRNet_W32_C', num_classes=num_classes)
  577. class HRNet_W40_C(BaseClassifier):
  578. def __init__(self, num_classes=1000):
  579. super(HRNet_W40_C, self).__init__(
  580. model_name='HRNet_W40_C', num_classes=num_classes)
  581. class HRNet_W44_C(BaseClassifier):
  582. def __init__(self, num_classes=1000):
  583. super(HRNet_W44_C, self).__init__(
  584. model_name='HRNet_W44_C', num_classes=num_classes)
  585. class HRNet_W48_C(BaseClassifier):
  586. def __init__(self, num_classes=1000):
  587. super(HRNet_W48_C, self).__init__(
  588. model_name='HRNet_W48_C', num_classes=num_classes)
  589. class HRNet_W64_C(BaseClassifier):
  590. def __init__(self, num_classes=1000):
  591. super(HRNet_W64_C, self).__init__(
  592. model_name='HRNet_W64_C', num_classes=num_classes)
  593. class Xception41(BaseClassifier):
  594. def __init__(self, num_classes=1000):
  595. super(Xception41, self).__init__(
  596. model_name='Xception41', num_classes=num_classes)
  597. class Xception65(BaseClassifier):
  598. def __init__(self, num_classes=1000):
  599. super(Xception65, self).__init__(
  600. model_name='Xception65', num_classes=num_classes)
  601. class Xception71(BaseClassifier):
  602. def __init__(self, num_classes=1000):
  603. super(Xception71, self).__init__(
  604. model_name='Xception71', num_classes=num_classes)
  605. class ShuffleNetV2(BaseClassifier):
  606. def __init__(self, num_classes=1000, scale=1.0):
  607. supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0]
  608. if scale not in supported_scale:
  609. logging.warning("scale={} is not supported by ShuffleNetV2, "
  610. "scale is forcibly set to 1.0".format(scale))
  611. scale = 1.0
  612. model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_')
  613. super(ShuffleNetV2, self).__init__(
  614. model_name=model_name, num_classes=num_classes)
  615. def _get_test_inputs(self, image_shape):
  616. if image_shape is not None:
  617. if len(image_shape) == 2:
  618. image_shape = [None, 3] + image_shape
  619. else:
  620. image_shape = [None, 3, 224, 224]
  621. logging.info('When exporting inference model for {},'.format(
  622. self.__class__.__name__
  623. ) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  624. )
  625. self._fix_transforms_shape(image_shape[-2:])
  626. input_spec = [
  627. InputSpec(
  628. shape=image_shape, name='image', dtype='float32')
  629. ]
  630. return input_spec
  631. class ShuffleNetV2_swish(BaseClassifier):
  632. def __init__(self, num_classes=1000):
  633. super(ShuffleNetV2_swish, self).__init__(
  634. model_name='ShuffleNetV2_x1_5', num_classes=num_classes)
  635. def _get_test_inputs(self, image_shape):
  636. if image_shape is not None:
  637. if len(image_shape) == 2:
  638. image_shape = [None, 3] + image_shape
  639. else:
  640. image_shape = [None, 3, 224, 224]
  641. logging.info('When exporting inference model for {},'.format(
  642. self.__class__.__name__
  643. ) + ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 224, 224]'
  644. )
  645. self._fix_transforms_shape(image_shape[-2:])
  646. input_spec = [
  647. InputSpec(
  648. shape=image_shape, name='image', dtype='float32')
  649. ]
  650. return input_spec