| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- import random
- import os.path as osp
- import numpy as np
- import cv2
- from PIL import Image, ImageEnhance
- from .imgaug_support import execute_imgaug
- from .ops import *
- from .box_utils import *
- class DetTransform:
- """检测数据处理基类
- """
- def __init__(self):
- pass
- class Compose(DetTransform):
- """根据数据预处理/增强列表对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强列表。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- self.use_mixup = False
- for t in self.transforms:
- if type(t).__name__ == 'MixupImage':
- self.use_mixup = True
- # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
- for op in self.transforms:
- if not isinstance(op, DetTransform):
- import imgaug.augmenters as iaa
- if not isinstance(op, iaa.Augmenter):
- raise Exception(
- "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
- )
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- - im_id (np.ndarray): 图像序列号,形状为(1,)。
- - image_shape (np.ndarray): 图像原始大小,形状为(2,),
- image_shape[0]为高,image_shape[1]为宽。
- - mixup (list): list为[im, im_info, label_info],分别对应
- 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
- 注意,当前epoch若无需进行mixup,则无该字段。
- label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
- 长度为n,其中n代表真实标注框的个数。
- - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;
- 字段由transforms中的最后一个数据预处理操作决定。
- """
- def decode_image(im_file, im_info, label_info):
- if im_info is None:
- im_info = dict()
- if isinstance(im_file, np.ndarray):
- if len(im_file.shape) != 3:
- raise Exception(
- "im should be 3-dimensions, but now is {}-dimensions".
- format(len(im_file.shape)))
- im = im_file
- else:
- try:
- im = cv2.imread(im_file).astype('float32')
- except:
- raise TypeError(
- 'Can\'t read The image file {}!'.format(im_file))
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- # make default im_info with [h, w, 1]
- im_info['im_resize_info'] = np.array(
- [im.shape[0], im.shape[1], 1.], dtype=np.float32)
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- if not self.use_mixup:
- if 'mixup' in im_info:
- del im_info['mixup']
- # decode mixup image
- if 'mixup' in im_info:
- im_info['mixup'] = \
- decode_image(im_info['mixup'][0],
- im_info['mixup'][1],
- im_info['mixup'][2])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- outputs = decode_image(im, im_info, label_info)
- im = outputs[0]
- im_info = outputs[1]
- if len(outputs) == 3:
- label_info = outputs[2]
- for op in self.transforms:
- if im is None:
- return None
- if isinstance(op, DetTransform):
- outputs = op(im, im_info, label_info)
- im = outputs[0]
- else:
- if label_info is not None:
- gt_poly = label_info.get('gt_poly', None)
- gt_bbox = label_info['gt_bbox']
- if gt_poly is None:
- im, aug_bbox = execute_imgaug(op, im, bboxes=gt_bbox)
- else:
- im, aug_bbox, aug_poly = execute_imgaug(
- op, im, bboxes=gt_bbox, polygons=gt_poly)
- label_info['gt_poly'] = aug_poly
- label_info['gt_bbox'] = aug_bbox
- outputs = (im, im_info, label_info)
- else:
- im, = execute_imgaug(op, im)
- outputs = (im, im_info)
- return outputs
- class ResizeByShort(DetTransform):
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- target_size (int): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not isinstance(short_size, int):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
- 三者组成的np.ndarray,形状为(3,)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- scale = float(self.short_size) / im_short_size
- if self.max_size > 0 and np.round(
- scale * im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im_resize_info = [resized_height, resized_width, scale]
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_LINEAR)
- im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Padding(DetTransform):
- """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
- `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
- 进行padding,最终输出图像为[320, 640]。
- 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
- a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
- 图像为[960, 960]。
- b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
- 输出图像为[640, 960]。
- 1. 如果coarsest_stride为1,target_size为None则直接返回。
- 2. 获取图像的高H、宽W。
- 3. 计算填充后图像的高H_new、宽W_new。
- 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
- 并将原图的np.ndarray粘贴于左上角。
- Args:
- coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
- target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
- Raises:
- TypeError: 形参`target_size`数据类型不满足需求。
- ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
- """
- def __init__(self, coarsest_stride=1, target_size=None):
- self.coarsest_stride = coarsest_stride
- if target_size is not None:
- if not isinstance(target_size, int):
- if not isinstance(target_size, tuple) and not isinstance(
- target_size, list):
- raise TypeError(
- "Padding: Type of target_size must in (int|list|tuple)."
- )
- elif len(target_size) != 2:
- raise ValueError(
- "Padding: Length of target_size must equal 2.")
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- ValueError: coarsest_stride,target_size需有且只有一个被指定。
- ValueError: target_size小于原图的大小。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Padding: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Padding: image is not 3-dimensional.')
- im_h, im_w, im_c = im.shape[:]
- if isinstance(self.target_size, int):
- padding_im_h = self.target_size
- padding_im_w = self.target_size
- elif isinstance(self.target_size, list) or isinstance(
- self.target_size, tuple):
- padding_im_w = self.target_size[0]
- padding_im_h = self.target_size[1]
- elif self.coarsest_stride > 0:
- padding_im_h = int(
- np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
- padding_im_w = int(
- np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
- else:
- raise ValueError(
- "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
- )
- pad_height = padding_im_h - im_h
- pad_width = padding_im_w - im_w
- if pad_height < 0 or pad_width < 0:
- raise ValueError(
- 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
- .format(im_w, im_h, padding_im_w, padding_im_h))
- padding_im = np.zeros((padding_im_h, padding_im_w, im_c),
- dtype=np.float32)
- padding_im[:im_h, :im_w, :] = im
- if label_info is None:
- return (padding_im, im_info)
- else:
- return (padding_im, im_info, label_info)
- class Resize(DetTransform):
- """调整图像大小(resize)。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- target_size (int/list/tuple): 短边目标长度。默认为608。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size=608, interp='LINEAR'):
- self.interp = interp
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise TypeError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Resize: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Resize: image is not 3-dimensional.')
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- im = resize(im, self.target_size, self.interp_dict[interp])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomHorizontalFlip(DetTransform):
- """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
- 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
- 执行2-4步操作,否则直接返回。
- 2. 水平翻转图像。
- 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
- 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
- Args:
- prob (float): 随机水平翻转的概率。默认为0.5。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- if not isinstance(self.prob, float):
- raise TypeError("RandomHorizontalFlip: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if not isinstance(im, np.ndarray):
- raise TypeError(
- "RandomHorizontalFlip: image is not a numpy array.")
- if len(im.shape) != 3:
- raise ValueError(
- "RandomHorizontalFlip: image is not 3-dimensional.")
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomHorizontalFlip! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info:
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
- 'Becasuse gt_bbox is not in label_info!')
- image_shape = im_info['image_shape']
- gt_bbox = label_info['gt_bbox']
- height = image_shape[0]
- width = image_shape[1]
- if np.random.uniform(0, 1) < self.prob:
- im = horizontal_flip(im)
- if gt_bbox.shape[0] == 0:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
- if 'gt_poly' in label_info and \
- len(label_info['gt_poly']) != 0:
- label_info['gt_poly'] = segms_horizontal_flip(
- label_info['gt_poly'], height, width)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Normalize(DetTransform):
- """对图像进行标准化。
- 1. 归一化图像到到区间[0.0, 1.0]。
- 2. 对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
- std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise TypeError("NormalizeImage: input type is invalid.")
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise TypeError('NormalizeImage: std is invalid!')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im = normalize(im, mean, std)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomDistort(DetTransform):
- """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
- 1. 对变换的操作顺序进行随机化操作。
- 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
- Args:
- brightness_range (float): 明亮度因子的范围。默认为0.5。
- brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
- contrast_range (float): 对比度因子的范围。默认为0.5。
- contrast_prob (float): 随机调整对比度的概率。默认为0.5。
- saturation_range (float): 饱和度因子的范围。默认为0.5。
- saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
- hue_range (int): 色调因子的范围。默认为18。
- hue_prob (float): 随机调整色调的概率。默认为0.5。
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [brightness, contrast, saturation, hue]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- for id in range(4):
- params = params_dict[ops[id].__name__]
- prob = prob_dict[ops[id].__name__]
- params['im'] = im
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class MixupImage(DetTransform):
- """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
- 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
- 1. 从随机beta分布中抽取出随机因子factor。
- 2.
- - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
- - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
- - 其余情况,执行下述操作:
- (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
- (2)拼接原图像标注框和mixup图像标注框。
- (3)拼接原图像标注框类别和mixup图像标注框类别。
- (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
- 3. 更新im_info中的image_shape信息。
- Args:
- alpha (float): 随机beta分布的下限。默认为1.5。
- beta (float): 随机beta分布的上限。默认为1.5。
- mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
- 默认为-1。
- Raises:
- ValueError: 数据长度不匹配。
- """
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in MixupImage")
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in MixupImage")
- self.mixup_epoch = mixup_epoch
- def _mixup_img(self, img1, img2, factor):
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- img = np.zeros((h, w, img1.shape[2]), 'float32')
- img[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32') * factor
- img[:img2.shape[0], :img2.shape[1], :] += \
- img2.astype('float32') * (1.0 - factor)
- return img.astype('float32')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- im_info删除的字段:
- - mixup (list): 与当前字段进行mixup的图像相关信息。
- label_info更新字段为:
- - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the im_info can not be None!')
- if 'mixup' not in im_info:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if im_info['epoch'] > self.mixup_epoch \
- or factor >= 1.0:
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if factor <= 0.0:
- return im_info.pop('mixup')
- im = self._mixup_img(im, im_info['mixup'][0], factor)
- if label_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info or \
- 'gt_score' not in label_info:
- raise TypeError('Cannot do MixupImage! ' + \
- 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
- gt_bbox1 = label_info['gt_bbox']
- gt_bbox2 = im_info['mixup'][2]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- gt_class1 = label_info['gt_class']
- gt_class2 = im_info['mixup'][2]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- gt_score1 = label_info['gt_score']
- gt_score2 = im_info['mixup'][2]['gt_score']
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- if 'gt_poly' in label_info:
- gt_poly1 = label_info['gt_poly']
- gt_poly2 = im_info['mixup'][2]['gt_poly']
- label_info['gt_poly'] = gt_poly1 + gt_poly2
- is_crowd1 = label_info['is_crowd']
- is_crowd2 = im_info['mixup'][2]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- label_info['gt_bbox'] = gt_bbox
- label_info['gt_score'] = gt_score
- label_info['gt_class'] = gt_class
- label_info['is_crowd'] = is_crowd
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomExpand(DetTransform):
- """随机扩张图像,模型训练时的数据增强操作。
- 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
- 2. 计算扩张后图像大小。
- 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
- 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
- 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
- Args:
- ratio (float): 图像扩张的最大比例。默认为4.0。
- prob (float): 随机扩张的概率。默认为0.5。
- fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
- """
- def __init__(self,
- ratio=4.,
- prob=0.5,
- fill_value=[123.675, 116.28, 103.53]):
- super(RandomExpand, self).__init__()
- assert ratio > 1.01, "expand ratio must be larger than 1.01"
- self.ratio = ratio
- self.prob = prob
- assert isinstance(fill_value, Sequence), \
- "fill value must be sequence"
- if not isinstance(fill_value, tuple):
- fill_value = tuple(fill_value)
- self.fill_value = fill_value
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomExpand! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomExpand! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if np.random.uniform(0., 1.) < self.prob:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- height = int(image_shape[0])
- width = int(image_shape[1])
- expand_ratio = np.random.uniform(1., self.ratio)
- h = int(height * expand_ratio)
- w = int(width * expand_ratio)
- if not h > height or not w > width:
- return (im, im_info, label_info)
- y = np.random.randint(0, h - height)
- x = np.random.randint(0, w - width)
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.fill_value, dtype=np.float32)
- canvas[y:y + height, x:x + width, :] = im
- im_info['image_shape'] = np.array([h, w]).astype('int32')
- if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
- label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
- height, width, expand_ratio)
- return (canvas, im_info, label_info)
- class RandomCrop(DetTransform):
- """随机裁剪图像。
- 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
- 2. 随机打乱thresholds。
- 3. 遍历thresholds中各元素:
- (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
- (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
- (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
- (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
- (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
- 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
- 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
- Args:
- aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
- thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
- scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
- num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
- allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
- cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
- """
- def __init__(self,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False):
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomCrop! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomCrop! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if len(label_info['gt_bbox']) == 0:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- w = image_shape[1]
- h = image_shape[0]
- gt_bbox = label_info['gt_bbox']
- thresholds = list(self.thresholds)
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return (im, im_info, label_info)
- found = False
- for i in range(self.num_attempts):
- scale = np.random.uniform(*self.scaling)
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- crop_h = int(h * scale / np.sqrt(aspect_ratio))
- crop_w = int(w * scale * np.sqrt(aspect_ratio))
- crop_y = np.random.randint(0, h - crop_h)
- crop_x = np.random.randint(0, w - crop_w)
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- iou = iou_matrix(gt_bbox, np.array([crop_box],
- dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = crop_box_with_center_constraint(
- gt_bbox, np.array(crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- found = True
- break
- if found:
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- crop_polys = crop_segms(label_info['gt_poly'], valid_ids,
- np.array(crop_box, dtype=np.int64),
- h, w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for id, crop_poly in enumerate(crop_polys):
- if crop_poly == []:
- delete_id.append(id)
- else:
- valid_polys.append(crop_poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if len(valid_polys) == 0:
- return (im, im_info, label_info)
- label_info['gt_poly'] = valid_polys
- else:
- label_info['gt_poly'] = crop_polys
- im = crop_image(im, crop_box)
- label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- label_info['gt_class'] = np.take(
- label_info['gt_class'], valid_ids, axis=0)
- im_info['image_shape'] = np.array(
- [crop_box[3] - crop_box[1],
- crop_box[2] - crop_box[0]]).astype('int32')
- if 'gt_score' in label_info:
- label_info['gt_score'] = np.take(
- label_info['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in label_info:
- label_info['is_crowd'] = np.take(
- label_info['is_crowd'], valid_ids, axis=0)
- return (im, im_info, label_info)
- return (im, im_info, label_info)
- class ArrangeFasterRCNN(DetTransform):
- """获取FasterRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
- 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_id = im_info['im_id']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_difficult = label_info['difficult']
- outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
- is_difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeMaskRCNN(DetTransform):
- """获取MaskRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
- 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeTrainMaskRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- assert 'gt_poly' in label_info
- segms = label_info['gt_poly']
- if len(segms) != 0:
- assert len(segms) == is_crowd.shape[0]
- gt_masks = []
- valid = True
- for i in range(len(segms)):
- segm = segms[i]
- gt_segm = []
- if is_crowd[i]:
- gt_segm.append([[0, 0]])
- else:
- for poly in segm:
- if len(poly) == 0:
- valid = False
- break
- gt_segm.append(np.array(poly).reshape(-1, 2))
- if (not valid) or len(gt_segm) == 0:
- break
- gt_masks.append(gt_segm)
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
- gt_masks)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeMaskRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- if self.mode == 'eval':
- im_id = im_info['im_id']
- outputs = (im, im_resize_info, im_id, im_shape)
- else:
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeYOLOv3(DetTransform):
- """获取YOLOv3模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
- 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
- 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
- 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
- 分别对应图像np.ndarray数据、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- if len(label_info['gt_bbox']) != len(label_info['gt_score']):
- raise ValueError("gt num mismatch: bbox and score.")
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- gt_score = np.zeros((50, ), dtype=im.dtype)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
- # parse [x1, y1, x2, y2] to [x, y, w, h]
- gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
- gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
- outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_id = im_info['im_id']
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- difficult = np.zeros((50, ), dtype=np.int32)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
- outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info can not be None!')
- im_shape = im_info['image_shape']
- outputs = (im, im_shape)
- return outputs
|