model_infer.cpp 3.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <glog/logging.h>
  15. #include <omp.h>
  16. #include <memory>
  17. #include <string>
  18. #include <fstream>
  19. #include "model_deploy/common/include/paddle_deploy.h"
  20. DEFINE_string(model_name, "", "Name of inference model");
  21. DEFINE_string(url, "", "url of triton server");
  22. DEFINE_string(model_version, "", "model version of triton server");
  23. DEFINE_string(cfg_file, "", "Path of yaml file");
  24. DEFINE_string(model_type, "", "model type");
  25. DEFINE_string(image, "", "Path of test image file");
  26. DEFINE_string(image_list, "", "Path of test image file");
  27. int main(int argc, char** argv) {
  28. // Parsing command-line
  29. google::ParseCommandLineFlags(&argc, &argv, true);
  30. std::cout << "ParseCommandLineFlags:FLAGS_model_type="
  31. << FLAGS_model_type << " model_name="
  32. << FLAGS_model_name << std::endl;
  33. // create model
  34. std::shared_ptr<PaddleDeploy::Model> model =
  35. PaddleDeploy::CreateModel(FLAGS_model_type);
  36. if (!model) {
  37. std::cout << "no model_type: " << FLAGS_model_type
  38. << " model=" << model << std::endl;
  39. return 0;
  40. }
  41. std::cout << "start model init " << std::endl;
  42. // model init
  43. model->Init(FLAGS_cfg_file);
  44. std::cout << "start engine init " << std::endl;
  45. // inference engine init
  46. model->TritonEngineInit(FLAGS_url, FLAGS_model_name, FLAGS_model_version);
  47. // prepare data
  48. std::vector<std::string> image_paths;
  49. if (FLAGS_image_list != "") {
  50. std::ifstream inf(FLAGS_image_list);
  51. if (!inf) {
  52. std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
  53. return -1;
  54. }
  55. std::string image_path;
  56. while (getline(inf, image_path)) {
  57. image_paths.push_back(image_path);
  58. }
  59. } else if (FLAGS_image != "") {
  60. image_paths.push_back(FLAGS_image);
  61. } else {
  62. std::cerr << "image_list or image should be defined" << std::endl;
  63. return -1;
  64. }
  65. std::cout << "start model predict " << image_paths.size() << std::endl;
  66. // infer
  67. std::vector<PaddleDeploy::Result> results;
  68. std::vector<cv::Mat> imgs;
  69. cv::Mat img;
  70. for (auto i = 0; i < image_paths.size(); ++i) {
  71. img = cv::imread(image_paths[i]);
  72. if (img.empty()) {
  73. std::cerr << "Fail to read image: " << i << std::endl;
  74. return -1;
  75. }
  76. imgs.clear();
  77. imgs.push_back(std::move(img));
  78. model->Predict(imgs, &results);
  79. std::cout << "image: " << image_paths[i] << std::endl;
  80. for (auto j = 0; j < results.size(); ++j) {
  81. std::cout << "Result for sample " << j << std::endl;
  82. std::cout << results[j] << std::endl;
  83. }
  84. }
  85. return 0;
  86. }