| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import sys
- import copy
- import numpy as np
- import itertools
- from paddlex.ppdet.metrics.map_utils import draw_pr_curve
- from paddlex.ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res
- import paddlex.utils.logging as logging
- def get_infer_results(outs, catid, bias=0):
- """
- Get result at the stage of inference.
- The output format is dictionary containing bbox or mask result.
- For example, bbox result is a list and each element contains
- image_id, category_id, bbox and score.
- """
- if outs is None or len(outs) == 0:
- raise ValueError(
- 'The number of valid detection result if zero. Please use reasonable model and check input data.'
- )
- im_id = outs['im_id']
- infer_res = {}
- if 'bbox' in outs:
- if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
- infer_res['bbox'] = get_det_poly_res(
- outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
- else:
- infer_res['bbox'] = get_det_res(
- outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
- if 'mask' in outs:
- # mask post process
- infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
- outs['bbox_num'], im_id, catid)
- if 'segm' in outs:
- infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)
- return infer_res
- def cocoapi_eval(anns,
- style,
- coco_gt=None,
- anno_file=None,
- max_dets=(100, 300, 1000),
- classwise=False):
- """
- Args:
- anns: Evaluation result.
- style (str): COCOeval style, can be `bbox` , `segm` and `proposal`.
- coco_gt (str): Whether to load COCOAPI through anno_file,
- eg: coco_gt = COCO(anno_file)
- anno_file (str): COCO annotations file.
- max_dets (tuple): COCO evaluation maxDets.
- classwise (bool): Whether per-category AP and draw P-R Curve or not.
- """
- assert coco_gt is not None or anno_file is not None
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- if coco_gt is None:
- coco_gt = COCO(anno_file)
- logging.info("Start evaluate...")
- coco_dt = loadRes(coco_gt, anns)
- if style == 'proposal':
- coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
- coco_eval.params.useCats = 0
- coco_eval.params.maxDets = list(max_dets)
- else:
- coco_eval = COCOeval(coco_gt, coco_dt, style)
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
- if classwise:
- # Compute per-category AP and PR curve
- try:
- from terminaltables import AsciiTable
- except Exception as e:
- logging.error(
- 'terminaltables not found, plaese install terminaltables. '
- 'for example: `pip install terminaltables`.')
- raise e
- precisions = coco_eval.eval['precision']
- cat_ids = coco_gt.getCatIds()
- # precision: (iou, recall, cls, area range, max dets)
- assert len(cat_ids) == precisions.shape[2]
- results_per_category = []
- for idx, catId in enumerate(cat_ids):
- # area range index 0: all area ranges
- # max dets index -1: typically 100 per image
- nm = coco_gt.loadCats(catId)[0]
- precision = precisions[:, :, idx, 0, -1]
- precision = precision[precision > -1]
- if precision.size:
- ap = np.mean(precision)
- else:
- ap = float('nan')
- results_per_category.append(
- (str(nm["name"]), '{:0.3f}'.format(float(ap))))
- pr_array = precisions[0, :, idx, 0, 2]
- recall_array = np.arange(0.0, 1.01, 0.01)
- draw_pr_curve(
- pr_array,
- recall_array,
- out_dir=style + '_pr_curve',
- file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))
- num_columns = min(6, len(results_per_category) * 2)
- results_flatten = list(itertools.chain(*results_per_category))
- headers = ['category', 'AP'] * (num_columns // 2)
- results_2d = itertools.zip_longest(
- * [results_flatten[i::num_columns] for i in range(num_columns)])
- table_data = [headers]
- table_data += [result for result in results_2d]
- table = AsciiTable(table_data)
- logging.info('Per-category of {} AP: \n{}'.format(style, table.table))
- logging.info("per-category PR curve has output to {} folder.".format(
- style + '_pr_curve'))
- # flush coco evaluation result
- sys.stdout.flush()
- return coco_eval.stats
- def loadRes(coco_obj, anns):
- """
- Load result file and return a result api object.
- :param resFile (str) : file name of result file
- :return: res (obj) : result api object
- """
- # This function has the same functionality as pycocotools.COCO.loadRes,
- # except that the input anns is list of results rather than a json file.
- # Refer to
- # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305,
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- import pycocotools.mask as maskUtils
- import time
- res = COCO()
- res.dataset['images'] = [img for img in coco_obj.dataset['images']]
- tic = time.time()
- assert type(anns) == list, 'results in not an array of objects'
- annsImgIds = [ann['image_id'] for ann in anns]
- assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \
- 'Results do not correspond to current coco set'
- if 'caption' in anns[0]:
- imgIds = set([img['id'] for img in res.dataset['images']]) & set(
- [ann['image_id'] for ann in anns])
- res.dataset['images'] = [
- img for img in res.dataset['images'] if img['id'] in imgIds
- ]
- for id, ann in enumerate(anns):
- ann['id'] = id + 1
- elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- bb = ann['bbox']
- x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
- if not 'segmentation' in ann:
- ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
- ann['area'] = bb[2] * bb[3]
- ann['id'] = id + 1
- ann['iscrowd'] = 0
- elif 'segmentation' in anns[0]:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- # now only support compressed RLE format as segmentation results
- ann['area'] = maskUtils.area(ann['segmentation'])
- if not 'bbox' in ann:
- ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
- ann['id'] = id + 1
- ann['iscrowd'] = 0
- elif 'keypoints' in anns[0]:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- s = ann['keypoints']
- x = s[0::3]
- y = s[1::3]
- x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
- ann['area'] = (x1 - x0) * (y1 - y0)
- ann['id'] = id + 1
- ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
- res.dataset['annotations'] = anns
- res.createIndex()
- return res
|