| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.paddleseg.cvlibs import manager
- from paddlex.paddleseg.models import layers
- from paddlex.paddleseg.utils import utils
- @manager.MODELS.add_component
- class GCNet(nn.Layer):
- """
- The GCNet implementation based on PaddlePaddle.
- The original article refers to
- Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond"
- (https://arxiv.org/pdf/1904.11492.pdf).
- Args:
- num_classes (int): The unique number of target classes.
- backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
- backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
- gc_channels (int, optional): The input channels to Global Context Block. Default: 512.
- ratio (float, optional): It indicates the ratio of attention channels and gc_channels. Default: 0.25.
- enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
- align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
- e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
- pretrained (str, optional): The path or url of pretrained model. Default: None.
- """
- def __init__(self,
- num_classes,
- backbone,
- backbone_indices=(2, 3),
- gc_channels=512,
- ratio=0.25,
- enable_auxiliary_loss=True,
- align_corners=False,
- pretrained=None):
- super().__init__()
- self.backbone = backbone
- backbone_channels = [
- backbone.feat_channels[i] for i in backbone_indices
- ]
- self.head = GCNetHead(num_classes, backbone_indices, backbone_channels,
- gc_channels, ratio, enable_auxiliary_loss)
- self.align_corners = align_corners
- self.pretrained = pretrained
- self.init_weight()
- def forward(self, x):
- feat_list = self.backbone(x)
- logit_list = self.head(feat_list)
- return [
- F.interpolate(
- logit,
- paddle.shape(x)[2:],
- mode='bilinear',
- align_corners=self.align_corners) for logit in logit_list
- ]
- def init_weight(self):
- if self.pretrained is not None:
- utils.load_entire_model(self, self.pretrained)
- class GCNetHead(nn.Layer):
- """
- The GCNetHead implementation.
- Args:
- num_classes (int): The unique number of target classes.
- backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
- The first index will be taken as a deep-supervision feature in auxiliary layer;
- the second one will be taken as input of GlobalContextBlock.
- backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index.
- gc_channels (int): The input channels to Global Context Block.
- ratio (float): It indicates the ratio of attention channels and gc_channels.
- enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
- """
- def __init__(self,
- num_classes,
- backbone_indices,
- backbone_channels,
- gc_channels,
- ratio,
- enable_auxiliary_loss=True):
- super().__init__()
- in_channels = backbone_channels[1]
- self.conv_bn_relu1 = layers.ConvBNReLU(
- in_channels=in_channels,
- out_channels=gc_channels,
- kernel_size=3,
- padding=1)
- self.gc_block = GlobalContextBlock(
- gc_channels=gc_channels, in_channels=gc_channels, ratio=ratio)
- self.conv_bn_relu2 = layers.ConvBNReLU(
- in_channels=gc_channels,
- out_channels=gc_channels,
- kernel_size=3,
- padding=1)
- self.conv_bn_relu3 = layers.ConvBNReLU(
- in_channels=in_channels + gc_channels,
- out_channels=gc_channels,
- kernel_size=3,
- padding=1)
- self.dropout = nn.Dropout(p=0.1)
- self.conv = nn.Conv2D(
- in_channels=gc_channels, out_channels=num_classes, kernel_size=1)
- if enable_auxiliary_loss:
- self.auxlayer = layers.AuxLayer(
- in_channels=backbone_channels[0],
- inter_channels=backbone_channels[0] // 4,
- out_channels=num_classes)
- self.backbone_indices = backbone_indices
- self.enable_auxiliary_loss = enable_auxiliary_loss
- def forward(self, feat_list):
- logit_list = []
- x = feat_list[self.backbone_indices[1]]
- output = self.conv_bn_relu1(x)
- output = self.gc_block(output)
- output = self.conv_bn_relu2(output)
- output = paddle.concat([x, output], axis=1)
- output = self.conv_bn_relu3(output)
- output = self.dropout(output)
- logit = self.conv(output)
- logit_list.append(logit)
- if self.enable_auxiliary_loss:
- low_level_feat = feat_list[self.backbone_indices[0]]
- auxiliary_logit = self.auxlayer(low_level_feat)
- logit_list.append(auxiliary_logit)
- return logit_list
- class GlobalContextBlock(nn.Layer):
- """
- Global Context Block implementation.
- Args:
- in_channels (int): The input channels of Global Context Block.
- ratio (float): The channels of attention map.
- """
- def __init__(self, gc_channels, in_channels, ratio):
- super().__init__()
- self.gc_channels = gc_channels
- self.conv_mask = nn.Conv2D(
- in_channels=in_channels, out_channels=1, kernel_size=1)
- self.softmax = nn.Softmax(axis=2)
- inter_channels = int(in_channels * ratio)
- self.channel_add_conv = nn.Sequential(
- nn.Conv2D(
- in_channels=in_channels,
- out_channels=inter_channels,
- kernel_size=1),
- nn.LayerNorm(normalized_shape=[inter_channels, 1, 1]),
- nn.ReLU(),
- nn.Conv2D(
- in_channels=inter_channels,
- out_channels=in_channels,
- kernel_size=1))
- def global_context_block(self, x):
- x_shape = paddle.shape(x)
- # [N, C, H * W]
- input_x = paddle.reshape(x, shape=[0, self.gc_channels, -1])
- # [N, 1, C, H * W]
- input_x = paddle.unsqueeze(input_x, axis=1)
- # [N, 1, H, W]
- context_mask = self.conv_mask(x)
- # [N, 1, H * W]
- context_mask = paddle.reshape(context_mask, shape=[0, 1, -1])
- context_mask = self.softmax(context_mask)
- # [N, 1, H * W, 1]
- context_mask = paddle.unsqueeze(context_mask, axis=-1)
- # [N, 1, C, 1]
- context = paddle.matmul(input_x, context_mask)
- # [N, C, 1, 1]
- context = paddle.reshape(context, shape=[0, self.gc_channels, 1, 1])
- return context
- def forward(self, x):
- context = self.global_context_block(x)
- channel_add_term = self.channel_add_conv(context)
- out = x + channel_add_term
- return out
|