| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- def SyncBatchNorm(*args, **kwargs):
- """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead"""
- if paddle.get_device() == 'cpu' or os.environ.get(
- 'PADDLESEG_EXPORT_STAGE'):
- return nn.BatchNorm2D(*args, **kwargs)
- else:
- return nn.SyncBatchNorm(*args, **kwargs)
- class ConvBNReLU(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding='same',
- **kwargs):
- super().__init__()
- self._conv = nn.Conv2D(
- in_channels, out_channels, kernel_size, padding=padding, **kwargs)
- self._batch_norm = SyncBatchNorm(out_channels)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- x = F.relu(x)
- return x
- class ConvBN(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding='same',
- **kwargs):
- super().__init__()
- self._conv = nn.Conv2D(
- in_channels, out_channels, kernel_size, padding=padding, **kwargs)
- self._batch_norm = SyncBatchNorm(out_channels)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- return x
- class ConvReLUPool(nn.Layer):
- def __init__(self, in_channels, out_channels):
- super().__init__()
- self.conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- dilation=1)
- def forward(self, x):
- x = self.conv(x)
- x = F.relu(x)
- x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2)
- return x
- class SeparableConvBNReLU(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding='same',
- **kwargs):
- super().__init__()
- self.depthwise_conv = ConvBN(
- in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- padding=padding,
- groups=in_channels,
- **kwargs)
- self.piontwise_conv = ConvBNReLU(
- in_channels, out_channels, kernel_size=1, groups=1)
- def forward(self, x):
- x = self.depthwise_conv(x)
- x = self.piontwise_conv(x)
- return x
- class DepthwiseConvBN(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding='same',
- **kwargs):
- super().__init__()
- self.depthwise_conv = ConvBN(
- in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- padding=padding,
- groups=in_channels,
- **kwargs)
- def forward(self, x):
- x = self.depthwise_conv(x)
- return x
- class AuxLayer(nn.Layer):
- """
- The auxiliary layer implementation for auxiliary loss.
- Args:
- in_channels (int): The number of input channels.
- inter_channels (int): The intermediate channels.
- out_channels (int): The number of output channels, and usually it is num_classes.
- dropout_prob (float, optional): The drop rate. Default: 0.1.
- """
- def __init__(self,
- in_channels,
- inter_channels,
- out_channels,
- dropout_prob=0.1):
- super().__init__()
- self.conv_bn_relu = ConvBNReLU(
- in_channels=in_channels,
- out_channels=inter_channels,
- kernel_size=3,
- padding=1)
- self.dropout = nn.Dropout(p=dropout_prob)
- self.conv = nn.Conv2D(
- in_channels=inter_channels,
- out_channels=out_channels,
- kernel_size=1)
- def forward(self, x):
- x = self.conv_bn_relu(x)
- x = self.dropout(x)
- x = self.conv(x)
- return x
|