utils.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import contextlib
  15. import filelock
  16. import math
  17. import os
  18. import tempfile
  19. from urllib.parse import urlparse, unquote
  20. import paddle
  21. from paddlex.paddleseg.utils import logger, seg_env
  22. from paddlex.paddleseg.utils.download import download_file_and_uncompress
  23. @contextlib.contextmanager
  24. def generate_tempdir(directory: str=None, **kwargs):
  25. '''Generate a temporary directory'''
  26. directory = seg_env.TMP_HOME if not directory else directory
  27. with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir:
  28. yield _dir
  29. def load_entire_model(model, pretrained):
  30. if pretrained is not None:
  31. load_pretrained_model(model, pretrained)
  32. else:
  33. logger.warning('Not all pretrained params of {} are loaded, ' \
  34. 'training from scratch or a pretrained backbone.'.format(model.__class__.__name__))
  35. def load_pretrained_model(model, pretrained_model):
  36. if pretrained_model is not None:
  37. logger.info('Loading pretrained model from {}'.format(
  38. pretrained_model))
  39. # download pretrained model from url
  40. if urlparse(pretrained_model).netloc:
  41. pretrained_model = unquote(pretrained_model)
  42. savename = pretrained_model.split('/')[-1]
  43. if not savename.endswith(('tgz', 'tar.gz', 'tar', 'zip')):
  44. savename = pretrained_model.split('/')[-2]
  45. else:
  46. savename = savename.split('.')[0]
  47. with generate_tempdir() as _dir:
  48. with filelock.FileLock(
  49. os.path.join(seg_env.TMP_HOME, savename)):
  50. pretrained_model = download_file_and_uncompress(
  51. pretrained_model,
  52. savepath=_dir,
  53. extrapath=seg_env.PRETRAINED_MODEL_HOME,
  54. extraname=savename)
  55. pretrained_model = os.path.join(pretrained_model,
  56. 'model.pdparams')
  57. if os.path.exists(pretrained_model):
  58. para_state_dict = paddle.load(pretrained_model)
  59. model_state_dict = model.state_dict()
  60. keys = model_state_dict.keys()
  61. num_params_loaded = 0
  62. for k in keys:
  63. if k not in para_state_dict:
  64. logger.warning("{} is not in pretrained model".format(k))
  65. elif list(para_state_dict[k].shape) != list(model_state_dict[k]
  66. .shape):
  67. logger.warning(
  68. "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
  69. .format(k, para_state_dict[k].shape, model_state_dict[
  70. k].shape))
  71. else:
  72. model_state_dict[k] = para_state_dict[k]
  73. num_params_loaded += 1
  74. model.set_dict(model_state_dict)
  75. logger.info("There are {}/{} variables loaded into {}.".format(
  76. num_params_loaded,
  77. len(model_state_dict), model.__class__.__name__))
  78. else:
  79. raise ValueError('The pretrained model directory is not Found: {}'.
  80. format(pretrained_model))
  81. else:
  82. logger.info(
  83. 'No pretrained model to load, {} will be trained from scratch.'.
  84. format(model.__class__.__name__))
  85. def resume(model, optimizer, resume_model):
  86. if resume_model is not None:
  87. logger.info('Resume model from {}'.format(resume_model))
  88. if os.path.exists(resume_model):
  89. resume_model = os.path.normpath(resume_model)
  90. ckpt_path = os.path.join(resume_model, 'model.pdparams')
  91. para_state_dict = paddle.load(ckpt_path)
  92. ckpt_path = os.path.join(resume_model, 'model.pdopt')
  93. opti_state_dict = paddle.load(ckpt_path)
  94. model.set_state_dict(para_state_dict)
  95. optimizer.set_state_dict(opti_state_dict)
  96. iter = resume_model.split('_')[-1]
  97. iter = int(iter)
  98. return iter
  99. else:
  100. raise ValueError(
  101. 'Directory of the model needed to resume is not Found: {}'.
  102. format(resume_model))
  103. else:
  104. logger.info('No model needed to resume.')