resnet.py 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
  27. class ConvBNLayer(nn.Layer):
  28. def __init__(self,
  29. num_channels,
  30. num_filters,
  31. filter_size,
  32. stride=1,
  33. groups=1,
  34. act=None,
  35. name=None,
  36. data_format="NCHW"):
  37. super(ConvBNLayer, self).__init__()
  38. self._conv = Conv2D(
  39. in_channels=num_channels,
  40. out_channels=num_filters,
  41. kernel_size=filter_size,
  42. stride=stride,
  43. padding=(filter_size - 1) // 2,
  44. groups=groups,
  45. weight_attr=ParamAttr(name=name + "_weights"),
  46. bias_attr=False,
  47. data_format=data_format)
  48. if name == "conv1":
  49. bn_name = "bn_" + name
  50. else:
  51. bn_name = "bn" + name[3:]
  52. self._batch_norm = BatchNorm(
  53. num_filters,
  54. act=act,
  55. param_attr=ParamAttr(name=bn_name + "_scale"),
  56. bias_attr=ParamAttr(bn_name + "_offset"),
  57. moving_mean_name=bn_name + "_mean",
  58. moving_variance_name=bn_name + "_variance",
  59. data_layout=data_format)
  60. def forward(self, inputs):
  61. y = self._conv(inputs)
  62. y = self._batch_norm(y)
  63. return y
  64. class BottleneckBlock(nn.Layer):
  65. def __init__(self,
  66. num_channels,
  67. num_filters,
  68. stride,
  69. shortcut=True,
  70. name=None,
  71. data_format="NCHW"):
  72. super(BottleneckBlock, self).__init__()
  73. self.conv0 = ConvBNLayer(
  74. num_channels=num_channels,
  75. num_filters=num_filters,
  76. filter_size=1,
  77. act="relu",
  78. name=name + "_branch2a",
  79. data_format=data_format)
  80. self.conv1 = ConvBNLayer(
  81. num_channels=num_filters,
  82. num_filters=num_filters,
  83. filter_size=3,
  84. stride=stride,
  85. act="relu",
  86. name=name + "_branch2b",
  87. data_format=data_format)
  88. self.conv2 = ConvBNLayer(
  89. num_channels=num_filters,
  90. num_filters=num_filters * 4,
  91. filter_size=1,
  92. act=None,
  93. name=name + "_branch2c",
  94. data_format=data_format)
  95. if not shortcut:
  96. self.short = ConvBNLayer(
  97. num_channels=num_channels,
  98. num_filters=num_filters * 4,
  99. filter_size=1,
  100. stride=stride,
  101. name=name + "_branch1",
  102. data_format=data_format)
  103. self.shortcut = shortcut
  104. self._num_channels_out = num_filters * 4
  105. def forward(self, inputs):
  106. y = self.conv0(inputs)
  107. conv1 = self.conv1(y)
  108. conv2 = self.conv2(conv1)
  109. if self.shortcut:
  110. short = inputs
  111. else:
  112. short = self.short(inputs)
  113. y = paddle.add(x=short, y=conv2)
  114. y = F.relu(y)
  115. return y
  116. class BasicBlock(nn.Layer):
  117. def __init__(self,
  118. num_channels,
  119. num_filters,
  120. stride,
  121. shortcut=True,
  122. name=None,
  123. data_format="NCHW"):
  124. super(BasicBlock, self).__init__()
  125. self.stride = stride
  126. self.conv0 = ConvBNLayer(
  127. num_channels=num_channels,
  128. num_filters=num_filters,
  129. filter_size=3,
  130. stride=stride,
  131. act="relu",
  132. name=name + "_branch2a",
  133. data_format=data_format)
  134. self.conv1 = ConvBNLayer(
  135. num_channels=num_filters,
  136. num_filters=num_filters,
  137. filter_size=3,
  138. act=None,
  139. name=name + "_branch2b",
  140. data_format=data_format)
  141. if not shortcut:
  142. self.short = ConvBNLayer(
  143. num_channels=num_channels,
  144. num_filters=num_filters,
  145. filter_size=1,
  146. stride=stride,
  147. name=name + "_branch1",
  148. data_format=data_format)
  149. self.shortcut = shortcut
  150. def forward(self, inputs):
  151. y = self.conv0(inputs)
  152. conv1 = self.conv1(y)
  153. if self.shortcut:
  154. short = inputs
  155. else:
  156. short = self.short(inputs)
  157. y = paddle.add(x=short, y=conv1)
  158. y = F.relu(y)
  159. return y
  160. class ResNet(nn.Layer):
  161. def __init__(self,
  162. layers=50,
  163. class_dim=1000,
  164. input_image_channel=3,
  165. data_format="NCHW"):
  166. super(ResNet, self).__init__()
  167. self.layers = layers
  168. self.data_format = data_format
  169. self.input_image_channel = input_image_channel
  170. supported_layers = [18, 34, 50, 101, 152]
  171. assert layers in supported_layers, \
  172. "supported layers are {} but input layer is {}".format(
  173. supported_layers, layers)
  174. if layers == 18:
  175. depth = [2, 2, 2, 2]
  176. elif layers == 34 or layers == 50:
  177. depth = [3, 4, 6, 3]
  178. elif layers == 101:
  179. depth = [3, 4, 23, 3]
  180. elif layers == 152:
  181. depth = [3, 8, 36, 3]
  182. num_channels = [64, 256, 512,
  183. 1024] if layers >= 50 else [64, 64, 128, 256]
  184. num_filters = [64, 128, 256, 512]
  185. self.conv = ConvBNLayer(
  186. num_channels=self.input_image_channel,
  187. num_filters=64,
  188. filter_size=7,
  189. stride=2,
  190. act="relu",
  191. name="conv1",
  192. data_format=self.data_format)
  193. self.pool2d_max = MaxPool2D(
  194. kernel_size=3, stride=2, padding=1, data_format=self.data_format)
  195. self.block_list = []
  196. if layers >= 50:
  197. for block in range(len(depth)):
  198. shortcut = False
  199. for i in range(depth[block]):
  200. if layers in [101, 152] and block == 2:
  201. if i == 0:
  202. conv_name = "res" + str(block + 2) + "a"
  203. else:
  204. conv_name = "res" + str(block + 2) + "b" + str(i)
  205. else:
  206. conv_name = "res" + str(block + 2) + chr(97 + i)
  207. bottleneck_block = self.add_sublayer(
  208. conv_name,
  209. BottleneckBlock(
  210. num_channels=num_channels[block]
  211. if i == 0 else num_filters[block] * 4,
  212. num_filters=num_filters[block],
  213. stride=2 if i == 0 and block != 0 else 1,
  214. shortcut=shortcut,
  215. name=conv_name,
  216. data_format=self.data_format))
  217. self.block_list.append(bottleneck_block)
  218. shortcut = True
  219. else:
  220. for block in range(len(depth)):
  221. shortcut = False
  222. for i in range(depth[block]):
  223. conv_name = "res" + str(block + 2) + chr(97 + i)
  224. basic_block = self.add_sublayer(
  225. conv_name,
  226. BasicBlock(
  227. num_channels=num_channels[block]
  228. if i == 0 else num_filters[block],
  229. num_filters=num_filters[block],
  230. stride=2 if i == 0 and block != 0 else 1,
  231. shortcut=shortcut,
  232. name=conv_name,
  233. data_format=self.data_format))
  234. self.block_list.append(basic_block)
  235. shortcut = True
  236. self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
  237. self.pool2d_avg_channels = num_channels[-1] * 2
  238. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  239. self.out = Linear(
  240. self.pool2d_avg_channels,
  241. class_dim,
  242. weight_attr=ParamAttr(
  243. initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
  244. bias_attr=ParamAttr(name="fc_0.b_0"))
  245. def forward(self, inputs):
  246. with paddle.static.amp.fp16_guard():
  247. if self.data_format == "NHWC":
  248. inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
  249. inputs.stop_gradient = True
  250. y = self.conv(inputs)
  251. y = self.pool2d_max(y)
  252. for block in self.block_list:
  253. y = block(y)
  254. y = self.pool2d_avg(y)
  255. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  256. y = self.out(y)
  257. return y
  258. def ResNet18(**args):
  259. model = ResNet(layers=18, **args)
  260. return model
  261. def ResNet34(**args):
  262. model = ResNet(layers=34, **args)
  263. return model
  264. def ResNet50(**args):
  265. model = ResNet(layers=50, **args)
  266. return model
  267. def ResNet101(**args):
  268. model = ResNet(layers=101, **args)
  269. return model
  270. def ResNet152(**args):
  271. model = ResNet(layers=152, **args)
  272. return model