| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- __all__ = [
- "ResNeXt50_32x4d", "ResNeXt50_64x4d", "ResNeXt101_32x4d",
- "ResNeXt101_64x4d", "ResNeXt152_32x4d", "ResNeXt152_64x4d"
- ]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- groups=1,
- act=None,
- name=None,
- data_format="NCHW"):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False,
- data_format=data_format)
- if name == "conv1":
- bn_name = "bn_" + name
- else:
- bn_name = "bn" + name[3:]
- self._batch_norm = BatchNorm(
- num_filters,
- act=act,
- param_attr=ParamAttr(name=bn_name + '_scale'),
- bias_attr=ParamAttr(bn_name + '_offset'),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance',
- data_layout=data_format)
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class BottleneckBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- cardinality,
- shortcut=True,
- name=None,
- data_format="NCHW"):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters,
- filter_size=1,
- act='relu',
- name=name + "_branch2a",
- data_format=data_format)
- self.conv1 = ConvBNLayer(
- num_channels=num_filters,
- num_filters=num_filters,
- filter_size=3,
- groups=cardinality,
- stride=stride,
- act='relu',
- name=name + "_branch2b",
- data_format=data_format)
- self.conv2 = ConvBNLayer(
- num_channels=num_filters,
- num_filters=num_filters * 2 if cardinality == 32 else num_filters,
- filter_size=1,
- act=None,
- name=name + "_branch2c",
- data_format=data_format)
- if not shortcut:
- self.short = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters * 2
- if cardinality == 32 else num_filters,
- filter_size=1,
- stride=stride,
- name=name + "_branch1",
- data_format=data_format)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- conv2 = self.conv2(conv1)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv2)
- y = F.relu(y)
- return y
- class ResNeXt(nn.Layer):
- def __init__(self,
- layers=50,
- class_dim=1000,
- cardinality=32,
- input_image_channel=3,
- data_format="NCHW"):
- super(ResNeXt, self).__init__()
- self.layers = layers
- self.data_format = data_format
- self.input_image_channel = input_image_channel
- self.cardinality = cardinality
- supported_layers = [50, 101, 152]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- supported_cardinality = [32, 64]
- assert cardinality in supported_cardinality, \
- "supported cardinality is {} but input cardinality is {}" \
- .format(supported_cardinality, cardinality)
- if layers == 50:
- depth = [3, 4, 6, 3]
- elif layers == 101:
- depth = [3, 4, 23, 3]
- elif layers == 152:
- depth = [3, 8, 36, 3]
- num_channels = [64, 256, 512, 1024]
- num_filters = [128, 256, 512,
- 1024] if cardinality == 32 else [256, 512, 1024, 2048]
- self.conv = ConvBNLayer(
- num_channels=self.input_image_channel,
- num_filters=64,
- filter_size=7,
- stride=2,
- act='relu',
- name="res_conv1",
- data_format=self.data_format)
- self.pool2d_max = MaxPool2D(
- kernel_size=3, stride=2, padding=1, data_format=self.data_format)
- self.block_list = []
- for block in range(len(depth)):
- shortcut = False
- for i in range(depth[block]):
- if layers in [101, 152] and block == 2:
- if i == 0:
- conv_name = "res" + str(block + 2) + "a"
- else:
- conv_name = "res" + str(block + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block + 2) + chr(97 + i)
- bottleneck_block = self.add_sublayer(
- 'bb_%d_%d' % (block, i),
- BottleneckBlock(
- num_channels=num_channels[block] if i == 0 else
- num_filters[block] * int(64 // self.cardinality),
- num_filters=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- cardinality=self.cardinality,
- shortcut=shortcut,
- name=conv_name,
- data_format=self.data_format))
- self.block_list.append(bottleneck_block)
- shortcut = True
- self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
- self.pool2d_avg_channels = num_channels[-1] * 2
- stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
- self.out = Linear(
- self.pool2d_avg_channels,
- class_dim,
- weight_attr=ParamAttr(
- initializer=Uniform(-stdv, stdv), name="fc_weights"),
- bias_attr=ParamAttr(name="fc_offset"))
- def forward(self, inputs):
- with paddle.static.amp.fp16_guard():
- if self.data_format == "NHWC":
- inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
- inputs.stop_gradient = True
- y = self.conv(inputs)
- y = self.pool2d_max(y)
- for block in self.block_list:
- y = block(y)
- y = self.pool2d_avg(y)
- y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
- y = self.out(y)
- return y
- def ResNeXt50_32x4d(**args):
- model = ResNeXt(layers=50, cardinality=32, **args)
- return model
- def ResNeXt50_64x4d(**args):
- model = ResNeXt(layers=50, cardinality=64, **args)
- return model
- def ResNeXt101_32x4d(**args):
- model = ResNeXt(layers=101, cardinality=32, **args)
- return model
- def ResNeXt101_64x4d(**args):
- model = ResNeXt(layers=101, cardinality=64, **args)
- return model
- def ResNeXt152_32x4d(**args):
- model = ResNeXt(layers=152, cardinality=32, **args)
- return model
- def ResNeXt152_64x4d(**args):
- model = ResNeXt(layers=152, cardinality=64, **args)
- return model
|