resnext.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import numpy as np
  18. import paddle
  19. from paddle import ParamAttr
  20. import paddle.nn as nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  23. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  24. from paddle.nn.initializer import Uniform
  25. import math
  26. __all__ = [
  27. "ResNeXt50_32x4d", "ResNeXt50_64x4d", "ResNeXt101_32x4d",
  28. "ResNeXt101_64x4d", "ResNeXt152_32x4d", "ResNeXt152_64x4d"
  29. ]
  30. class ConvBNLayer(nn.Layer):
  31. def __init__(self,
  32. num_channels,
  33. num_filters,
  34. filter_size,
  35. stride=1,
  36. groups=1,
  37. act=None,
  38. name=None,
  39. data_format="NCHW"):
  40. super(ConvBNLayer, self).__init__()
  41. self._conv = Conv2D(
  42. in_channels=num_channels,
  43. out_channels=num_filters,
  44. kernel_size=filter_size,
  45. stride=stride,
  46. padding=(filter_size - 1) // 2,
  47. groups=groups,
  48. weight_attr=ParamAttr(name=name + "_weights"),
  49. bias_attr=False,
  50. data_format=data_format)
  51. if name == "conv1":
  52. bn_name = "bn_" + name
  53. else:
  54. bn_name = "bn" + name[3:]
  55. self._batch_norm = BatchNorm(
  56. num_filters,
  57. act=act,
  58. param_attr=ParamAttr(name=bn_name + '_scale'),
  59. bias_attr=ParamAttr(bn_name + '_offset'),
  60. moving_mean_name=bn_name + '_mean',
  61. moving_variance_name=bn_name + '_variance',
  62. data_layout=data_format)
  63. def forward(self, inputs):
  64. y = self._conv(inputs)
  65. y = self._batch_norm(y)
  66. return y
  67. class BottleneckBlock(nn.Layer):
  68. def __init__(self,
  69. num_channels,
  70. num_filters,
  71. stride,
  72. cardinality,
  73. shortcut=True,
  74. name=None,
  75. data_format="NCHW"):
  76. super(BottleneckBlock, self).__init__()
  77. self.conv0 = ConvBNLayer(
  78. num_channels=num_channels,
  79. num_filters=num_filters,
  80. filter_size=1,
  81. act='relu',
  82. name=name + "_branch2a",
  83. data_format=data_format)
  84. self.conv1 = ConvBNLayer(
  85. num_channels=num_filters,
  86. num_filters=num_filters,
  87. filter_size=3,
  88. groups=cardinality,
  89. stride=stride,
  90. act='relu',
  91. name=name + "_branch2b",
  92. data_format=data_format)
  93. self.conv2 = ConvBNLayer(
  94. num_channels=num_filters,
  95. num_filters=num_filters * 2 if cardinality == 32 else num_filters,
  96. filter_size=1,
  97. act=None,
  98. name=name + "_branch2c",
  99. data_format=data_format)
  100. if not shortcut:
  101. self.short = ConvBNLayer(
  102. num_channels=num_channels,
  103. num_filters=num_filters * 2
  104. if cardinality == 32 else num_filters,
  105. filter_size=1,
  106. stride=stride,
  107. name=name + "_branch1",
  108. data_format=data_format)
  109. self.shortcut = shortcut
  110. def forward(self, inputs):
  111. y = self.conv0(inputs)
  112. conv1 = self.conv1(y)
  113. conv2 = self.conv2(conv1)
  114. if self.shortcut:
  115. short = inputs
  116. else:
  117. short = self.short(inputs)
  118. y = paddle.add(x=short, y=conv2)
  119. y = F.relu(y)
  120. return y
  121. class ResNeXt(nn.Layer):
  122. def __init__(self,
  123. layers=50,
  124. class_dim=1000,
  125. cardinality=32,
  126. input_image_channel=3,
  127. data_format="NCHW"):
  128. super(ResNeXt, self).__init__()
  129. self.layers = layers
  130. self.data_format = data_format
  131. self.input_image_channel = input_image_channel
  132. self.cardinality = cardinality
  133. supported_layers = [50, 101, 152]
  134. assert layers in supported_layers, \
  135. "supported layers are {} but input layer is {}".format(
  136. supported_layers, layers)
  137. supported_cardinality = [32, 64]
  138. assert cardinality in supported_cardinality, \
  139. "supported cardinality is {} but input cardinality is {}" \
  140. .format(supported_cardinality, cardinality)
  141. if layers == 50:
  142. depth = [3, 4, 6, 3]
  143. elif layers == 101:
  144. depth = [3, 4, 23, 3]
  145. elif layers == 152:
  146. depth = [3, 8, 36, 3]
  147. num_channels = [64, 256, 512, 1024]
  148. num_filters = [128, 256, 512,
  149. 1024] if cardinality == 32 else [256, 512, 1024, 2048]
  150. self.conv = ConvBNLayer(
  151. num_channels=self.input_image_channel,
  152. num_filters=64,
  153. filter_size=7,
  154. stride=2,
  155. act='relu',
  156. name="res_conv1",
  157. data_format=self.data_format)
  158. self.pool2d_max = MaxPool2D(
  159. kernel_size=3, stride=2, padding=1, data_format=self.data_format)
  160. self.block_list = []
  161. for block in range(len(depth)):
  162. shortcut = False
  163. for i in range(depth[block]):
  164. if layers in [101, 152] and block == 2:
  165. if i == 0:
  166. conv_name = "res" + str(block + 2) + "a"
  167. else:
  168. conv_name = "res" + str(block + 2) + "b" + str(i)
  169. else:
  170. conv_name = "res" + str(block + 2) + chr(97 + i)
  171. bottleneck_block = self.add_sublayer(
  172. 'bb_%d_%d' % (block, i),
  173. BottleneckBlock(
  174. num_channels=num_channels[block] if i == 0 else
  175. num_filters[block] * int(64 // self.cardinality),
  176. num_filters=num_filters[block],
  177. stride=2 if i == 0 and block != 0 else 1,
  178. cardinality=self.cardinality,
  179. shortcut=shortcut,
  180. name=conv_name,
  181. data_format=self.data_format))
  182. self.block_list.append(bottleneck_block)
  183. shortcut = True
  184. self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
  185. self.pool2d_avg_channels = num_channels[-1] * 2
  186. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  187. self.out = Linear(
  188. self.pool2d_avg_channels,
  189. class_dim,
  190. weight_attr=ParamAttr(
  191. initializer=Uniform(-stdv, stdv), name="fc_weights"),
  192. bias_attr=ParamAttr(name="fc_offset"))
  193. def forward(self, inputs):
  194. with paddle.static.amp.fp16_guard():
  195. if self.data_format == "NHWC":
  196. inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
  197. inputs.stop_gradient = True
  198. y = self.conv(inputs)
  199. y = self.pool2d_max(y)
  200. for block in self.block_list:
  201. y = block(y)
  202. y = self.pool2d_avg(y)
  203. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  204. y = self.out(y)
  205. return y
  206. def ResNeXt50_32x4d(**args):
  207. model = ResNeXt(layers=50, cardinality=32, **args)
  208. return model
  209. def ResNeXt50_64x4d(**args):
  210. model = ResNeXt(layers=50, cardinality=64, **args)
  211. return model
  212. def ResNeXt101_32x4d(**args):
  213. model = ResNeXt(layers=101, cardinality=32, **args)
  214. return model
  215. def ResNeXt101_64x4d(**args):
  216. model = ResNeXt(layers=101, cardinality=64, **args)
  217. return model
  218. def ResNeXt152_32x4d(**args):
  219. model = ResNeXt(layers=152, cardinality=32, **args)
  220. return model
  221. def ResNeXt152_64x4d(**args):
  222. model = ResNeXt(layers=152, cardinality=64, **args)
  223. return model