| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn.functional as F
- __all__ = [
- 'CELoss', 'MixCELoss', 'GoogLeNetLoss', 'JSDivLoss', 'MultiLabelLoss'
- ]
- class Loss(object):
- """
- Loss
- """
- def __init__(self, class_dim=1000, epsilon=None):
- assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
- self._class_dim = class_dim
- if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
- self._epsilon = epsilon
- self._label_smoothing = True
- else:
- self._epsilon = None
- self._label_smoothing = False
- def _labelsmoothing(self, target):
- if target.shape[-1] != self._class_dim:
- one_hot_target = F.one_hot(target, self._class_dim)
- else:
- one_hot_target = target
- soft_target = F.label_smooth(one_hot_target, epsilon=self._epsilon)
- soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
- return soft_target
- def _binary_crossentropy(self, input, target):
- if self._label_smoothing:
- target = self._labelsmoothing(target)
- cost = F.binary_cross_entropy_with_logits(
- logit=input, label=target)
- else:
- cost = F.binary_cross_entropy_with_logits(
- logit=input, label=target)
- avg_cost = paddle.mean(cost)
- return avg_cost
- def _crossentropy(self, input, target):
- if self._label_smoothing:
- target = self._labelsmoothing(target)
- input = -F.log_softmax(input, axis=-1)
- cost = paddle.sum(target * input, axis=-1)
- else:
- cost = F.cross_entropy(input=input, label=target)
- avg_cost = paddle.mean(cost)
- return avg_cost
- def _kldiv(self, input, target, name=None):
- eps = 1.0e-10
- cost = target * paddle.log(
- (target + eps) / (input + eps)) * self._class_dim
- return cost
- def _jsdiv(self, input, target):
- input = F.softmax(input)
- target = F.softmax(target)
- cost = self._kldiv(input, target) + self._kldiv(target, input)
- cost = cost / 2
- avg_cost = paddle.mean(cost)
- return avg_cost
- def __call__(self, input, target):
- pass
- class MultiLabelLoss(Loss):
- """
- Multilabel loss based binary cross entropy
- """
- def __init__(self, class_dim=1000, epsilon=None):
- super(MultiLabelLoss, self).__init__(class_dim, epsilon)
- def __call__(self, input, target):
- cost = self._binary_crossentropy(input, target)
- return cost
- class CELoss(Loss):
- """
- Cross entropy loss
- """
- def __init__(self, class_dim=1000, epsilon=None):
- super(CELoss, self).__init__(class_dim, epsilon)
- def __call__(self, input, target):
- cost = self._crossentropy(input, target)
- return cost
- class MixCELoss(Loss):
- """
- Cross entropy loss with mix(mixup, cutmix, fixmix)
- """
- def __init__(self, class_dim=1000, epsilon=None):
- super(MixCELoss, self).__init__(class_dim, epsilon)
- def __call__(self, input, target0, target1, lam):
- cost0 = self._crossentropy(input, target0)
- cost1 = self._crossentropy(input, target1)
- cost = lam * cost0 + (1.0 - lam) * cost1
- avg_cost = paddle.mean(cost)
- return avg_cost
- class GoogLeNetLoss(Loss):
- """
- Cross entropy loss used after googlenet
- """
- def __init__(self, class_dim=1000, epsilon=None):
- super(GoogLeNetLoss, self).__init__(class_dim, epsilon)
- def __call__(self, input0, input1, input2, target):
- cost0 = self._crossentropy(input0, target)
- cost1 = self._crossentropy(input1, target)
- cost2 = self._crossentropy(input2, target)
- cost = cost0 + 0.3 * cost1 + 0.3 * cost2
- avg_cost = paddle.mean(cost)
- return avg_cost
- class JSDivLoss(Loss):
- """
- JSDiv loss
- """
- def __init__(self, class_dim=1000, epsilon=None):
- super(JSDivLoss, self).__init__(class_dim, epsilon)
- def __call__(self, input, target):
- cost = self._jsdiv(input, target)
- return cost
|