| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # function:
- # operators to process sample,
- # eg: decode/resize/crop image
- from __future__ import absolute_import
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- import cv2
- import numpy as np
- import math
- import copy
- import os
- from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform
- from paddlex.ppdet.core.workspace import serializable
- from paddlex.ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- registered_ops = []
- __all__ = [
- 'RandomAffine', 'KeyPointFlip', 'TagGenerate', 'ToHeatmaps',
- 'NormalizePermute', 'EvalAffine', 'RandomFlipHalfBodyTransform',
- 'TopDownAffine', 'ToHeatmapsTopDown', 'TopDownEvalAffine'
- ]
- def register_keypointop(cls):
- return serializable(cls)
- @register_keypointop
- class KeyPointFlip(object):
- """Get the fliped image by flip_prob. flip the coords also
- the left coords and right coords should exchange while flip, for the right keypoint will be left keypoint after image fliped
- Args:
- flip_permutation (list[17]): the left-right exchange order list corresponding to [0,1,2,...,16]
- hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
- flip_prob (float): the ratio whether to flip the image
- records(dict): the dict contained the image, mask and coords
- Returns:
- records(dict): contain the image, mask and coords after tranformed
- """
- def __init__(self, flip_permutation, hmsize, flip_prob=0.5):
- super(KeyPointFlip, self).__init__()
- assert isinstance(flip_permutation, Sequence)
- self.flip_permutation = flip_permutation
- self.flip_prob = flip_prob
- self.hmsize = hmsize
- def __call__(self, records):
- image = records['image']
- kpts_lst = records['joints']
- mask_lst = records['mask']
- flip = np.random.random() < self.flip_prob
- if flip:
- image = image[:, ::-1]
- for idx, hmsize in enumerate(self.hmsize):
- if len(mask_lst) > idx:
- mask_lst[idx] = mask_lst[idx][:, ::-1]
- if kpts_lst[idx].ndim == 3:
- kpts_lst[idx] = kpts_lst[idx][:, self.flip_permutation]
- else:
- kpts_lst[idx] = kpts_lst[idx][self.flip_permutation]
- kpts_lst[idx][..., 0] = hmsize - kpts_lst[idx][..., 0]
- kpts_lst[idx] = kpts_lst[idx].astype(np.int64)
- kpts_lst[idx][kpts_lst[idx][..., 0] >= hmsize, 2] = 0
- kpts_lst[idx][kpts_lst[idx][..., 1] >= hmsize, 2] = 0
- kpts_lst[idx][kpts_lst[idx][..., 0] < 0, 2] = 0
- kpts_lst[idx][kpts_lst[idx][..., 1] < 0, 2] = 0
- records['image'] = image
- records['joints'] = kpts_lst
- records['mask'] = mask_lst
- return records
- def get_warp_matrix(theta, size_input, size_dst, size_target):
- """Calculate the transformation matrix under the constraint of unbiased.
- Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
- Data Processing for Human Pose Estimation (CVPR 2020).
- Args:
- theta (float): Rotation angle in degrees.
- size_input (np.ndarray): Size of input image [w, h].
- size_dst (np.ndarray): Size of output image [w, h].
- size_target (np.ndarray): Size of ROI in input plane [w, h].
- Returns:
- matrix (np.ndarray): A matrix for transformation.
- """
- theta = np.deg2rad(theta)
- matrix = np.zeros((2, 3), dtype=np.float32)
- scale_x = size_dst[0] / size_target[0]
- scale_y = size_dst[1] / size_target[1]
- matrix[0, 0] = math.cos(theta) * scale_x
- matrix[0, 1] = -math.sin(theta) * scale_x
- matrix[0, 2] = scale_x * (
- -0.5 * size_input[0] * math.cos(theta) + 0.5 * size_input[1] *
- math.sin(theta) + 0.5 * size_target[0])
- matrix[1, 0] = math.sin(theta) * scale_y
- matrix[1, 1] = math.cos(theta) * scale_y
- matrix[1, 2] = scale_y * (
- -0.5 * size_input[0] * math.sin(theta) - 0.5 * size_input[1] *
- math.cos(theta) + 0.5 * size_target[1])
- return matrix
- @register_keypointop
- class RandomAffine(object):
- """apply affine transform to image, mask and coords
- to achieve the rotate, scale and shift effect for training image
- Args:
- max_degree (float): the max abslute rotate degree to apply, transform range is [-max_degree, max_degree]
- max_scale (list[2]): the scale range to apply, transform range is [min, max]
- max_shift (float): the max abslute shift ratio to apply, transform range is [-max_shift*imagesize, max_shift*imagesize]
- hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
- trainsize (int): the standard length used to train, the 'scale_type' of [h,w] will be resize to trainsize for standard
- scale_type (str): the length of [h,w] to used for trainsize, chosed between 'short' and 'long'
- records(dict): the dict contained the image, mask and coords
- Returns:
- records(dict): contain the image, mask and coords after tranformed
- """
- def __init__(self,
- max_degree=30,
- scale=[0.75, 1.5],
- max_shift=0.2,
- hmsize=[128, 256],
- trainsize=512,
- scale_type='short'):
- super(RandomAffine, self).__init__()
- self.max_degree = max_degree
- self.min_scale = scale[0]
- self.max_scale = scale[1]
- self.max_shift = max_shift
- self.hmsize = hmsize
- self.trainsize = trainsize
- self.scale_type = scale_type
- def _get_affine_matrix(self, center, scale, res, rot=0):
- """Generate transformation matrix."""
- h = scale
- t = np.zeros((3, 3), dtype=np.float32)
- t[0, 0] = float(res[1]) / h
- t[1, 1] = float(res[0]) / h
- t[0, 2] = res[1] * (-float(center[0]) / h + .5)
- t[1, 2] = res[0] * (-float(center[1]) / h + .5)
- t[2, 2] = 1
- if rot != 0:
- rot = -rot # To match direction of rotation from cropping
- rot_mat = np.zeros((3, 3), dtype=np.float32)
- rot_rad = rot * np.pi / 180
- sn, cs = np.sin(rot_rad), np.cos(rot_rad)
- rot_mat[0, :2] = [cs, -sn]
- rot_mat[1, :2] = [sn, cs]
- rot_mat[2, 2] = 1
- # Need to rotate around center
- t_mat = np.eye(3)
- t_mat[0, 2] = -res[1] / 2
- t_mat[1, 2] = -res[0] / 2
- t_inv = t_mat.copy()
- t_inv[:2, 2] *= -1
- t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
- return t
- def __call__(self, records):
- image = records['image']
- keypoints = records['joints']
- heatmap_mask = records['mask']
- degree = (np.random.random() * 2 - 1) * self.max_degree
- shape = np.array(image.shape[:2][::-1])
- center = center = np.array((np.array(shape) / 2))
- aug_scale = np.random.random() * (self.max_scale - self.min_scale
- ) + self.min_scale
- if self.scale_type == 'long':
- scale = max(shape[0], shape[1]) / 1.0
- elif self.scale_type == 'short':
- scale = min(shape[0], shape[1]) / 1.0
- else:
- raise ValueError('Unknown scale type: {}'.format(self.scale_type))
- roi_size = aug_scale * scale
- dx = int(0)
- dy = int(0)
- if self.max_shift > 0:
- dx = np.random.randint(-self.max_shift * roi_size,
- self.max_shift * roi_size)
- dy = np.random.randint(-self.max_shift * roi_size,
- self.max_shift * roi_size)
- center += np.array([dx, dy])
- input_size = 2 * center
- keypoints[..., :2] *= shape
- heatmap_mask *= 255
- kpts_lst = []
- mask_lst = []
- image_affine_mat = self._get_affine_matrix(
- center, roi_size, (self.trainsize, self.trainsize), degree)[:2]
- image = cv2.warpAffine(
- image,
- image_affine_mat, (self.trainsize, self.trainsize),
- flags=cv2.INTER_LINEAR)
- for hmsize in self.hmsize:
- kpts = copy.deepcopy(keypoints)
- mask_affine_mat = self._get_affine_matrix(
- center, roi_size, (hmsize, hmsize), degree)[:2]
- if heatmap_mask is not None:
- mask = cv2.warpAffine(heatmap_mask, mask_affine_mat,
- (hmsize, hmsize))
- mask = ((mask / 255) > 0.5).astype(np.float32)
- kpts[..., 0:2] = warp_affine_joints(kpts[..., 0:2].copy(),
- mask_affine_mat)
- kpts[np.trunc(kpts[..., 0]) >= hmsize, 2] = 0
- kpts[np.trunc(kpts[..., 1]) >= hmsize, 2] = 0
- kpts[np.trunc(kpts[..., 0]) < 0, 2] = 0
- kpts[np.trunc(kpts[..., 1]) < 0, 2] = 0
- kpts_lst.append(kpts)
- mask_lst.append(mask)
- records['image'] = image
- records['joints'] = kpts_lst
- records['mask'] = mask_lst
- return records
- @register_keypointop
- class EvalAffine(object):
- """apply affine transform to image
- resize the short of [h,w] to standard size for eval
- Args:
- size (int): the standard length used to train, the 'short' of [h,w] will be resize to trainsize for standard
- records(dict): the dict contained the image, mask and coords
- Returns:
- records(dict): contain the image, mask and coords after tranformed
- """
- def __init__(self, size, stride=64):
- super(EvalAffine, self).__init__()
- self.size = size
- self.stride = stride
- def __call__(self, records):
- image = records['image']
- mask = records['mask'] if 'mask' in records else None
- s = self.size
- h, w, _ = image.shape
- trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False)
- image_resized = cv2.warpAffine(image, trans, size_resized)
- if mask is not None:
- mask = cv2.warpAffine(mask, trans, size_resized)
- records['mask'] = mask
- if 'joints' in records:
- del records['joints']
- records['image'] = image_resized
- return records
- @register_keypointop
- class NormalizePermute(object):
- def __init__(self,
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.120, 57.375],
- is_scale=True):
- super(NormalizePermute, self).__init__()
- self.mean = mean
- self.std = std
- self.is_scale = is_scale
- def __call__(self, records):
- image = records['image']
- image = image.astype(np.float32)
- if self.is_scale:
- image /= 255.
- image = image.transpose((2, 0, 1))
- mean = np.array(self.mean, dtype=np.float32)
- std = np.array(self.std, dtype=np.float32)
- invstd = 1. / std
- for v, m, s in zip(image, mean, invstd):
- v.__isub__(m).__imul__(s)
- records['image'] = image
- return records
- @register_keypointop
- class TagGenerate(object):
- """record gt coords for aeloss to sample coords value in tagmaps
- Args:
- num_joints (int): the keypoint numbers of dataset to train
- num_people (int): maxmum people to support for sample aeloss
- records(dict): the dict contained the image, mask and coords
- Returns:
- records(dict): contain the gt coords used in tagmap
- """
- def __init__(self, num_joints, max_people=30):
- super(TagGenerate, self).__init__()
- self.max_people = max_people
- self.num_joints = num_joints
- def __call__(self, records):
- kpts_lst = records['joints']
- kpts = kpts_lst[0]
- tagmap = np.zeros(
- (self.max_people, self.num_joints, 4), dtype=np.int64)
- inds = np.where(kpts[..., 2] > 0)
- p, j = inds[0], inds[1]
- visible = kpts[inds]
- # tagmap is [p, j, 3], where last dim is j, y, x
- tagmap[p, j, 0] = j
- tagmap[p, j, 1] = visible[..., 1] # y
- tagmap[p, j, 2] = visible[..., 0] # x
- tagmap[p, j, 3] = 1
- records['tagmap'] = tagmap
- del records['joints']
- return records
- @register_keypointop
- class ToHeatmaps(object):
- """to generate the gaussin heatmaps of keypoint for heatmap loss
- Args:
- num_joints (int): the keypoint numbers of dataset to train
- hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
- sigma (float): the std of gaussin kernel genereted
- records(dict): the dict contained the image, mask and coords
- Returns:
- records(dict): contain the heatmaps used to heatmaploss
- """
- def __init__(self, num_joints, hmsize, sigma=None):
- super(ToHeatmaps, self).__init__()
- self.num_joints = num_joints
- self.hmsize = np.array(hmsize)
- if sigma is None:
- sigma = hmsize[0] // 64
- self.sigma = sigma
- r = 6 * sigma + 3
- x = np.arange(0, r, 1, np.float32)
- y = x[:, None]
- x0, y0 = 3 * sigma + 1, 3 * sigma + 1
- self.gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
- def __call__(self, records):
- kpts_lst = records['joints']
- mask_lst = records['mask']
- for idx, hmsize in enumerate(self.hmsize):
- mask = mask_lst[idx]
- kpts = kpts_lst[idx]
- heatmaps = np.zeros((self.num_joints, hmsize, hmsize))
- inds = np.where(kpts[..., 2] > 0)
- visible = kpts[inds].astype(np.int64)[..., :2]
- ul = np.round(visible - 3 * self.sigma - 1)
- br = np.round(visible + 3 * self.sigma + 2)
- sul = np.maximum(0, -ul)
- sbr = np.minimum(hmsize, br) - ul
- dul = np.clip(ul, 0, hmsize - 1)
- dbr = np.clip(br, 0, hmsize)
- for i in range(len(visible)):
- dx1, dy1 = dul[i]
- dx2, dy2 = dbr[i]
- sx1, sy1 = sul[i]
- sx2, sy2 = sbr[i]
- heatmaps[inds[1][i], dy1:dy2, dx1:dx2] = np.maximum(
- self.gaussian[sy1:sy2, sx1:sx2],
- heatmaps[inds[1][i], dy1:dy2, dx1:dx2])
- records['heatmap_gt{}x'.format(idx + 1)] = heatmaps
- records['mask_{}x'.format(idx + 1)] = mask
- del records['mask']
- return records
- @register_keypointop
- class RandomFlipHalfBodyTransform(object):
- """apply data augment to image and coords
- to achieve the flip, scale, rotate and half body transform effect for training image
- Args:
- trainsize (list):[w, h], Image target size
- upper_body_ids (list): The upper body joint ids
- flip_pairs (list): The left-right joints exchange order list
- pixel_std (int): The pixel std of the scale
- scale (float): The scale factor to transform the image
- rot (int): The rotate factor to transform the image
- num_joints_half_body (int): The joints threshold of the half body transform
- prob_half_body (float): The threshold of the half body transform
- flip (bool): Whether to flip the image
- Returns:
- records(dict): contain the image and coords after tranformed
- """
- def __init__(self,
- trainsize,
- upper_body_ids,
- flip_pairs,
- pixel_std,
- scale=0.35,
- rot=40,
- num_joints_half_body=8,
- prob_half_body=0.3,
- flip=True,
- rot_prob=0.6):
- super(RandomFlipHalfBodyTransform, self).__init__()
- self.trainsize = trainsize
- self.upper_body_ids = upper_body_ids
- self.flip_pairs = flip_pairs
- self.pixel_std = pixel_std
- self.scale = scale
- self.rot = rot
- self.num_joints_half_body = num_joints_half_body
- self.prob_half_body = prob_half_body
- self.flip = flip
- self.aspect_ratio = trainsize[0] * 1.0 / trainsize[1]
- self.rot_prob = rot_prob
- def halfbody_transform(self, joints, joints_vis):
- upper_joints = []
- lower_joints = []
- for joint_id in range(joints.shape[0]):
- if joints_vis[joint_id][0] > 0:
- if joint_id in self.upper_body_ids:
- upper_joints.append(joints[joint_id])
- else:
- lower_joints.append(joints[joint_id])
- if np.random.randn() < 0.5 and len(upper_joints) > 2:
- selected_joints = upper_joints
- else:
- selected_joints = lower_joints if len(
- lower_joints) > 2 else upper_joints
- if len(selected_joints) < 2:
- return None, None
- selected_joints = np.array(selected_joints, dtype=np.float32)
- center = selected_joints.mean(axis=0)[:2]
- left_top = np.amin(selected_joints, axis=0)
- right_bottom = np.amax(selected_joints, axis=0)
- w = right_bottom[0] - left_top[0]
- h = right_bottom[1] - left_top[1]
- if w > self.aspect_ratio * h:
- h = w * 1.0 / self.aspect_ratio
- elif w < self.aspect_ratio * h:
- w = h * self.aspect_ratio
- scale = np.array(
- [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
- dtype=np.float32)
- scale = scale * 1.5
- return center, scale
- def flip_joints(self, joints, joints_vis, width, matched_parts):
- joints[:, 0] = width - joints[:, 0] - 1
- for pair in matched_parts:
- joints[pair[0], :], joints[pair[1], :] = \
- joints[pair[1], :], joints[pair[0], :].copy()
- joints_vis[pair[0], :], joints_vis[pair[1], :] = \
- joints_vis[pair[1], :], joints_vis[pair[0], :].copy()
- return joints * joints_vis, joints_vis
- def __call__(self, records):
- image = records['image']
- joints = records['joints']
- joints_vis = records['joints_vis']
- c = records['center']
- s = records['scale']
- r = 0
- if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body and
- np.random.rand() < self.prob_half_body):
- c_half_body, s_half_body = self.halfbody_transform(joints,
- joints_vis)
- if c_half_body is not None and s_half_body is not None:
- c, s = c_half_body, s_half_body
- sf = self.scale
- rf = self.rot
- s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
- r = np.clip(np.random.randn() * rf, -rf * 2,
- rf * 2) if np.random.random() <= self.rot_prob else 0
- if self.flip and np.random.random() <= 0.5:
- image = image[:, ::-1, :]
- joints, joints_vis = self.flip_joints(
- joints, joints_vis, image.shape[1], self.flip_pairs)
- c[0] = image.shape[1] - c[0] - 1
- records['image'] = image
- records['joints'] = joints
- records['joints_vis'] = joints_vis
- records['center'] = c
- records['scale'] = s
- records['rotate'] = r
- return records
- @register_keypointop
- class TopDownAffine(object):
- """apply affine transform to image and coords
- Args:
- trainsize (list): [w, h], the standard size used to train
- records(dict): the dict contained the image and coords
- Returns:
- records (dict): contain the image and coords after tranformed
- """
- def __init__(self, trainsize):
- self.trainsize = trainsize
- def __call__(self, records):
- image = records['image']
- joints = records['joints']
- joints_vis = records['joints_vis']
- rot = records['rotate'] if "rotate" in records else 0
- trans = get_affine_transform(records['center'], records['scale'] * 200,
- rot, self.trainsize)
- image = cv2.warpAffine(
- image,
- trans, (int(self.trainsize[0]), int(self.trainsize[1])),
- flags=cv2.INTER_LINEAR)
- for i in range(joints.shape[0]):
- if joints_vis[i, 0] > 0.0:
- joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
- records['image'] = image
- records['joints'] = joints
- return records
- @register_keypointop
- class TopDownEvalAffine(object):
- """apply affine transform to image and coords
- Args:
- trainsize (list): [w, h], the standard size used to train
- records(dict): the dict contained the image and coords
- Returns:
- records (dict): contain the image and coords after tranformed
- """
- def __init__(self, trainsize):
- self.trainsize = trainsize
- def __call__(self, records):
- image = records['image']
- rot = 0
- imshape = records['im_shape'][::-1]
- center = imshape / 2.
- scale = imshape
- trans = get_affine_transform(center, scale, rot, self.trainsize)
- image = cv2.warpAffine(
- image,
- trans, (int(self.trainsize[0]), int(self.trainsize[1])),
- flags=cv2.INTER_LINEAR)
- records['image'] = image
- return records
- @register_keypointop
- class ToHeatmapsTopDown(object):
- """to generate the gaussin heatmaps of keypoint for heatmap loss
- Args:
- hmsize (list): [w, h] output heatmap's size
- sigma (float): the std of gaussin kernel genereted
- records(dict): the dict contained the image and coords
- Returns:
- records (dict): contain the heatmaps used to heatmaploss
- """
- def __init__(self, hmsize, sigma):
- super(ToHeatmapsTopDown, self).__init__()
- self.hmsize = np.array(hmsize)
- self.sigma = sigma
- def __call__(self, records):
- joints = records['joints']
- joints_vis = records['joints_vis']
- num_joints = joints.shape[0]
- image_size = np.array(
- [records['image'].shape[1], records['image'].shape[0]])
- target_weight = np.ones((num_joints, 1), dtype=np.float32)
- target_weight[:, 0] = joints_vis[:, 0]
- target = np.zeros(
- (num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
- tmp_size = self.sigma * 3
- for joint_id in range(num_joints):
- feat_stride = image_size / self.hmsize
- mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
- mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
- # Check that any part of the gaussian is in-bounds
- ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
- br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
- if ul[0] >= self.hmsize[0] or ul[1] >= self.hmsize[1] or br[
- 0] < 0 or br[1] < 0:
- # If not, just return the image as is
- target_weight[joint_id] = 0
- continue
- # # Generate gaussian
- size = 2 * tmp_size + 1
- x = np.arange(0, size, 1, np.float32)
- y = x[:, np.newaxis]
- x0 = y0 = size // 2
- # The gaussian is not normalized, we want the center value to equal 1
- g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * self.sigma**2))
- # Usable gaussian range
- g_x = max(0, -ul[0]), min(br[0], self.hmsize[0]) - ul[0]
- g_y = max(0, -ul[1]), min(br[1], self.hmsize[1]) - ul[1]
- # Image range
- img_x = max(0, ul[0]), min(br[0], self.hmsize[0])
- img_y = max(0, ul[1]), min(br[1], self.hmsize[1])
- v = target_weight[joint_id]
- if v > 0.5:
- target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[
- 0]:g_y[1], g_x[0]:g_x[1]]
- records['target'] = target
- records['target_weight'] = target_weight
- del records['joints'], records['joints_vis']
- return records
|