| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import os
- import json
- from collections import OrderedDict
- from collections import defaultdict
- import numpy as np
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- from ..modeling.keypoint_utils import oks_nms
- __all__ = ['KeyPointTopDownCOCOEval']
- class KeyPointTopDownCOCOEval(object):
- def __init__(self,
- anno_file,
- num_samples,
- num_joints,
- output_eval,
- iou_type='keypoints',
- in_vis_thre=0.2,
- oks_thre=0.9):
- super(KeyPointTopDownCOCOEval, self).__init__()
- self.coco = COCO(anno_file)
- self.num_samples = num_samples
- self.num_joints = num_joints
- self.iou_type = iou_type
- self.in_vis_thre = in_vis_thre
- self.oks_thre = oks_thre
- self.output_eval = output_eval
- self.res_file = os.path.join(output_eval, "keypoints_results.json")
- self.reset()
- def reset(self):
- self.results = {
- 'all_preds': np.zeros(
- (self.num_samples, self.num_joints, 3), dtype=np.float32),
- 'all_boxes': np.zeros((self.num_samples, 6)),
- 'image_path': []
- }
- self.eval_results = {}
- self.idx = 0
- def update(self, inputs, outputs):
- kpts, _ = outputs['keypoint'][0]
- num_images = inputs['image'].shape[0]
- self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
- 3] = kpts[:, :, 0:3]
- self.results['all_boxes'][self.idx:self.idx + num_images, 0:
- 2] = inputs['center'].numpy()[:, 0:2]
- self.results['all_boxes'][self.idx:self.idx + num_images, 2:
- 4] = inputs['scale'].numpy()[:, 0:2]
- self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
- inputs['scale'].numpy() * 200, 1)
- self.results['all_boxes'][self.idx:self.idx + num_images,
- 5] = np.squeeze(inputs['score'].numpy())
- self.results['image_path'].extend(inputs['im_id'].numpy())
- self.idx += num_images
- def _write_coco_keypoint_results(self, keypoints):
- data_pack = [{
- 'cat_id': 1,
- 'cls': 'person',
- 'ann_type': 'keypoints',
- 'keypoints': keypoints
- }]
- results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
- if not os.path.exists(self.output_eval):
- os.makedirs(self.output_eval)
- with open(self.res_file, 'w') as f:
- json.dump(results, f, sort_keys=True, indent=4)
- try:
- json.load(open(self.res_file))
- except Exception:
- content = []
- with open(self.res_file, 'r') as f:
- for line in f:
- content.append(line)
- content[-1] = ']'
- with open(self.res_file, 'w') as f:
- for c in content:
- f.write(c)
- def _coco_keypoint_results_one_category_kernel(self, data_pack):
- cat_id = data_pack['cat_id']
- keypoints = data_pack['keypoints']
- cat_results = []
- for img_kpts in keypoints:
- if len(img_kpts) == 0:
- continue
- _key_points = np.array(
- [img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
- _key_points = _key_points.reshape(_key_points.shape[0], -1)
- result = [{
- 'image_id': img_kpts[k]['image'],
- 'category_id': cat_id,
- 'keypoints': _key_points[k].tolist(),
- 'score': img_kpts[k]['score'],
- 'center': list(img_kpts[k]['center']),
- 'scale': list(img_kpts[k]['scale'])
- } for k in range(len(img_kpts))]
- cat_results.extend(result)
- return cat_results
- def get_final_results(self, preds, all_boxes, img_path):
- _kpts = []
- for idx, kpt in enumerate(preds):
- _kpts.append({
- 'keypoints': kpt,
- 'center': all_boxes[idx][0:2],
- 'scale': all_boxes[idx][2:4],
- 'area': all_boxes[idx][4],
- 'score': all_boxes[idx][5],
- 'image': int(img_path[idx])
- })
- # image x person x (keypoints)
- kpts = defaultdict(list)
- for kpt in _kpts:
- kpts[kpt['image']].append(kpt)
- # rescoring and oks nms
- num_joints = preds.shape[1]
- in_vis_thre = self.in_vis_thre
- oks_thre = self.oks_thre
- oks_nmsed_kpts = []
- for img in kpts.keys():
- img_kpts = kpts[img]
- for n_p in img_kpts:
- box_score = n_p['score']
- kpt_score = 0
- valid_num = 0
- for n_jt in range(0, num_joints):
- t_s = n_p['keypoints'][n_jt][2]
- if t_s > in_vis_thre:
- kpt_score = kpt_score + t_s
- valid_num = valid_num + 1
- if valid_num != 0:
- kpt_score = kpt_score / valid_num
- # rescoring
- n_p['score'] = kpt_score * box_score
- keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
- oks_thre)
- if len(keep) == 0:
- oks_nmsed_kpts.append(img_kpts)
- else:
- oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
- self._write_coco_keypoint_results(oks_nmsed_kpts)
- def accumulate(self):
- self.get_final_results(self.results['all_preds'],
- self.results['all_boxes'],
- self.results['image_path'])
- coco_dt = self.coco.loadRes(self.res_file)
- coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
- coco_eval.params.useSegm = None
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
- keypoint_stats = []
- for ind in range(len(coco_eval.stats)):
- keypoint_stats.append((coco_eval.stats[ind]))
- self.eval_results['keypoint'] = keypoint_stats
- def log(self):
- stats_names = [
- 'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
- 'AR .75', 'AR (M)', 'AR (L)'
- ]
- num_values = len(stats_names)
- print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
- print('|---' * (num_values + 1) + '|')
- print(' '.join([
- '| {:.3f}'.format(value) for value in self.eval_results['keypoint']
- ]) + ' |')
- def get_results(self):
- return self.eval_results
|