| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddlex.ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- from paddlex.ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
- __all__ = ['DeepSORT']
- @register
- class DeepSORT(BaseArch):
- """
- DeepSORT network, see https://arxiv.org/abs/1703.07402
- Args:
- detector (object): detector model instance
- reid (object): reid model instance
- tracker (object): tracker instance
- """
- __category__ = 'architecture'
- def __init__(self,
- detector='YOLOv3',
- reid='PCBPyramid',
- tracker='DeepSORTTracker'):
- super(DeepSORT, self).__init__()
- self.detector = detector
- self.reid = reid
- self.tracker = tracker
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- if cfg['detector'] != 'None':
- detector = create(cfg['detector'])
- else:
- detector = None
- reid = create(cfg['reid'])
- tracker = create(cfg['tracker'])
- return {
- "detector": detector,
- "reid": reid,
- "tracker": tracker,
- }
- def _forward(self):
- assert 'ori_image' in self.inputs
- load_dets = 'pred_bboxes' in self.inputs and 'pred_scores' in self.inputs
- ori_image = self.inputs['ori_image']
- input_shape = self.inputs['image'].shape[2:]
- im_shape = self.inputs['im_shape']
- scale_factor = self.inputs['scale_factor']
- if self.detector and not load_dets:
- outs = self.detector(self.inputs)
- if outs['bbox_num'] > 0:
- pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape,
- im_shape, scale_factor)
- pred_scores = outs['bbox'][:, 1:2]
- else:
- pred_bboxes = []
- pred_scores = []
- else:
- pred_bboxes = self.inputs['pred_bboxes']
- pred_scores = self.inputs['pred_scores']
- if len(pred_bboxes) > 0:
- pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape,
- scale_factor)
- bbox_tlwh = paddle.concat(
- (pred_bboxes[:, 0:2],
- pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
- axis=1)
- crops, pred_scores = get_crops(
- pred_bboxes, ori_image, pred_scores, w=64, h=192)
- if len(crops) > 0:
- features = self.reid(paddle.to_tensor(crops))
- detections = [Detection(bbox_tlwh[i], conf, features[i])\
- for i, conf in enumerate(pred_scores)]
- else:
- detections = []
- else:
- detections = []
- self.tracker.predict()
- online_targets = self.tracker.update(detections)
- return online_targets
- def get_pred(self):
- return self._forward()
|